Rocky Mountain Research Station Logo USDA Forest Service
Rocky Mountain Research Station
Forestry Sciences Laboratory - Moscow, Idaho
Moscow Personnel  |  Site Index  |  Site Map  |  Moscow Home
Project Information  |  Modeling Software  |  Library  |  Project Photos  |  Offsite Links  |  Eng. Home

Soil & Water
Engineering Publications


Project Leader:
William J. Elliot
email Bill

Contact Webmaster
email webmaster

Database updated
855 days ago

Spatial and temporal effects of wildfire on the hydrology of step rangeland watershed

Pierson, F.B.; Robichaud, P.R.; Spaeth, K.E. 2001. Spatial and temporal effects of wildfire on the hydrology of step rangeland watershed. Hydrological Processes 15(15): 2905-2916. Ft. Collins, CO: USDA Forest Service, Rocky Mountain Research Station.

Keywords: rangeland; fire; infiltration; runoff; erosion; water-repellent; rainfall simulation

Links: pdf PDF [118 KB]

Abstract: Wildfire is a major ecological process and management issue on western rangelands. The impacts of wildfire on hydrologic processes such as infiltration, runoff, and erosion are not well understood. Small-plot rainfall simulation methods were applied in a rangeland wildfire setting to determine post-fire hydrologic response. Infiltration and interrill erosion processes were measured immediately post-fire and one year following the 1999 34 400 ha Denio fire in northwestern Nevada. Plot-scale spatial and temporal variability in fire impacts was compared with adjacent unburned areas. An index of water repellency was derived and used to quantify the influence of water-repellent soil conditions on infiltration. Results indicate the impact of the fire on infiltration was localized primarily on coppice microsites directly under shrubs characterized by high surface litter accumulations. Coppice microsites had very uniform fireinduced soil water repellency with 29 of 30 plots exhibiting at least a 10% reduction in initial infiltration with an average 28% reduction. Cumulative erosion was nearly four times higher on burned coppices compared with unburned coppices. The impact of the fire on infiltration and erosion was reduced, but still evident, 1 year after fire. Significant temporal variability in infiltration between years was observed on both burned and unburned areas, complicating the interpretation of fire impacts and hydrologic recovery following wildfire.

Moscow FSL publication no. 2001s