Rocky Mountain Research Station Logo USDA Forest Service
Rocky Mountain Research Station
Forestry Sciences Laboratory - Moscow, Idaho
Moscow Personnel  |  Site Index  |  Site Map  |  Moscow Home
Project Information  |  Modeling Software  |  Library  |  Project Photos  |  Offsite Links  |  Eng. Home

Soil & Water
Engineering Publications


Project Leader:
William J. Elliot
email Bill

Contact Webmaster
email webmaster

Database updated
861 days ago

Quantifying long-term post-fire sediment delivery and erosion mitigation effectiveness.

Robichaud P.R., Lewis S.A., Wagenbrenner, J.W., Brown R.E.,Pierson F.B. 2019. Quantifying long-term post-fire sediment delivery and erosion mitigation effectiveness. Earth Surface Processes and Landforms 2019. DOI: 10.1002/esp.4755

Keywords: rill erosion; wood mulch; wood strands; scarification; Hayman Fire; straw mulch; post-wildfire; recovery

Links: pdf PDF [2.1 MB]

Abstract: Large wildfires can have profound and lasting impacts not only from direct consumption of vegetation but also longerterm effects such as persistent soil erosion. The 2002 Hayman Fire burned in one of the watersheds supplying water to the Denver metropolitan area; thus there was concern regarding hillslope erosion and sedimentation in the reservoirs. The efficacy of various treatments for reducing erosion was tested, including hand scarification on contour, agricultural straw mulch, wood mulch, burned controls and unburned reference plots. Simulated rill erosion experiments were used both immediately after the fire and again 10 years post fire. To better understand untreated recovery, the same experiments were applied to control plots in post-fire years 1, 2, 3 and 4, and in unburned reference plots in years 4 and 10. Results indicate that control and scarified plots produced significantly greater sediment flux rates – 1.9 and 2.8 g s1 respectively – than the straw and wood mulch treatments – 0.9 and 1.1 g s1 – immediately after the fire. Mulch treatments reduced runoff rate, runoff velocity, and sediment concentration and flux rate. The straw mulch cover was no longer present, whereas the wood mulch was still there in year 10. Vegetation regrowth was slow and mulch treatments provided effective cover to reduce sediment right after the fire. In post-fire year 10, there were no significant differences in sediment flux rates across treatments; it is notable, however, that the wood mulch treatment (0.09 g s1) most closely approached the unburned condition (0.07 g s1). The burned control plots had high sediment flux rates until post-fire year 3, when flux rates significantly decreased and were statistically no longer higher than the unburned levels from year 4 and 10. These results will inform managers of the longer-term post-fire sediment delivery rates and of the ability of post-fire emergency hillslope treatments to mitigate erosion rates. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.

Moscow FSL publication no. 2019g