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Abstract

A principal task of evaluating large wildfires is to assess fire's effect on the soil in order to predict the potential watershed
response. Two types of soil water repellency tests, the water drop penetration time (WDPT) test and the mini-disk infiltrometer
(MDI) test, were performed after the Hayman Fire in Colorado, in the summer of 2002 to assess the infiltration potential of the
soil. Remotely sensed hyperspectral imagery was also collected to map post-wildfire ground cover and soil condition. Detailed
ground cover measurements were collected to validate the remotely sensed imagery and to examine the relationship between
ground cover and soil water repellency. Percent ash cover measured on the ground was significantly correlated to WDPT (r=0.42;
p-valueb0.0001), and the MDI test (r=−0.37; p-valueb0.0001). A Mixture Tuned Matched Filter (MTMF) spectral unmixing
algorithm was applied to the hyperspectral imagery, which produced fractional cover maps of ash, soil, and scorched and green
vegetation. The remotely sensed ash image had significant correlations to the water repellency tests, WDPT (r=0.24; p-value=0.001),
and theMDI test (r=−0.21; p-value=0.005). An iterative threshold analysis was also applied to the ash and water repellency data to
evaluate the relationship at increasingly higher levels of ash cover. Regression analysis between the means of grouped data: MDI
time vs. ash cover data (R2 =0.75) and vs. Ash MTMF scores (R2 =0.63) yielded significantly stronger relationships. From these
results we found on-the-ground ash cover greater than 49% and remotely sensed ash cover greater than 33% to be indicative of
strongly water repellent soils. Combining these results with geostatistical analyses indicated a spatial autocorrelation range of 15 to
40 m. Image pixels with high ash cover (N33%), including pixels within 15 m of these pixel patches, were used to create a
likelihood map of soil water repellency. This map is a good indicator of areas where soil experienced severe fire effects—areas that
likely have strong water repellent soil conditions and higher potential for post-fire erosion.
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1. Introduction

Collecting timely information about soil conditions is
among the most urgent and important tasks for
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determining post-fire erosion potential and recommend-
ing mitigation measures. The hydrologic condition of
soil changes considerably after a fire; water storage in
the forest floor is lost, infiltration potential decreases,
and runoff and erosion potentials increase (Robichaud,
2000; DeBano, 2000a; Letey, 2001). Much of the
decrease in infiltration can be attributed to the formation
of water repellent soils after a moderate or high severity
fire (DeBano et al., 1976; Giovannini and Lucchesi,
1997; DeBano, 2000a).

Fires that have a long enough residence time (5–
20 min) and reach high enough temperatures (175−
280 °C) to completely volatilize the surface organic
layer often render the soil water repellent (DeBano,
2000a; Robichaud and Hungerford, 2000; Shakesby
et al., 2007). As the organic compounds cool in the
deeper soil layers, they form a hydrophobic layer around
individual soil particles (DeBano et al., 1976; Letey,
2001). The formation of this non-continuous hydropho-
bic layer generally occurs at or below the soil surface, up
to 5 cm in depth (Clothier et al., 2000; DeBano, 2000b).
Soil water repellency has high spatial variability; this
non-continuity occurs laterally as well as vertically
within the soil profile (Hallett et al., 2004; Taumer et al.,
2005; Buczko et al., 2006; Woods et al., 2007).
Laterally, the formation of water repellency is dependent
on fluctuations in soil moisture, fuel loads, duff thick-
ness, root holes, and micro-climatic conditions during
combustion (DeBano, 2000a; Robichaud, 2000). Verti-
cally, water repellency is generally dependent on the soil
heat gradient of the fire; higher soil temperatures often
lead to the deeper formation of water repellent soils. The
degree of water repellency depends on the pre-fire
conditions, especially soil moisture and available fuel,
as both may dictate the temperatures reached through
the soil profile (Campbell et al., 1995; Robichaud and
Hungerford, 2000).

The extent, degree, and spatial distribution of soil
water repellency are important factors to consider when
evaluating post-fire runoff and erosion potential (Graber
et al., 2006; Woods et al., 2007). Two field methods for
determining soil water repellency involve measuring
respectively: 1) water drop penetration time (WDPT)
(DeBano, 1981); and 2) a relative infiltration rate by a
mini-disk infiltrometer (MDI) (Decagon Devices Inc.,
2003)1. The WDPT is a well-established test, whereas
the MDI is a newer test, which has been found to
1 The use of trade or firm names in this publication is for reader
information and does not imply endorsement by the U.S. Department
of Agriculture or Washington State University of any product or
service.
correlate well to the WDPT (Lewis et al., 2006;
Robichaud et al., in review). These tests require several
seconds to several minutes to complete and must be
repeated many times within an area of interest (DeBano,
1981; Letey et al., 2000). A goal and challenge with
either test is to make the point measurements meaning-
ful at the scale of a single watershed up to an entire
wildfire area.

Wildfires often cover large areas (N25,000 ha) and the
aforementioned tests are highly limited for identifying
and classifying water repellency on these large fires.
Further, because of the time required and subjectivity
involved with the current water repellency tests, the need
for an alternative to intensive manual sampling is
evident. Remotely sensed measurements may be a
substitute for or supplement to in situ samples, especially
if the remote estimates of water repellency are proven to
be accurate and reliable. These measurements, combined
with meaningful statistical and spatial relationships to
field samples, would allow for the evaluation and
mapping of soil water repellency in less time. Ground
samples would still be required to validate the remotely
sensed data, but fewer samples would be necessary.

Hyperspectral remote sensors garner high-resolution
data that can distinguish a range of features beyond the
scope of traditional multi-spectral satellite broadband
imagery and show promise for improving the direct
measurement of post-fire features and conditions (van
Wagtendonk et al., 2004; Robichaud et al., 2007). Aerial
hyperspectral sensors provide imagery in contiguous,
narrow bands of reflectance spectra ranging from the
visible through the short-wave infrared (SWIR) range of
the electromagnetic (EM) spectrum (wavelengths 400–
2500 nm). The spectral and spatial resolution is sensor-
dependent; spectral resolution can average 14–18 nm
between wavebands and the spatial resolution (pixel
size) can be as fine as 1–5 m (Earth Search Sciences
Inc., 2005).

A single image pixel is the sum of the individual
reflectance spectra from a mixture of surface materials
(Theseira et al., 2003; Song, 2005). The characteristic
features of the individual spectra from each reflective
material within the image area are retained, and can be
separated through spectral mixture modeling. Once
these components are identified, linear unmixing of
individual pixels can determine the fractional compo-
nent spectra and, in turn, the fractional coverage of the
surface materials being imaged (Adams et al., 1986;
Roberts et al., 1993).

An inherent assumption in spectral mixture modeling
is that pixels containing a single reflective material (a
pure pixel) will be the best match to the input spectrum
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(Roberts et al., 1993). It follows that pixels with
decreasing proportions of the target material will have
a poorer chance of the target being correctly identified
(Mundt et al., 2006; Glenn et al., 2005). Therefore,
image classification and correlations to field data are
expected to be most accurate and strongest in areas with
abundant target materials.

Most land cover scenes can be mapped in spectral
combinations of green vegetation, non-photosynthetic
(senesced or scorched) vegetation, soil and shade (Roberts
et al., 1993; Adams et al., 1995; Theseira et al., 2003;
Song, 2005). A combination of these spectra along
with an ash or char spectrum would account for the
majority of the cover types of a typical post-fire scene. A
previous investigation applied an unconstrained spectral
unmixing model to hyperspectral imagery after the
Hayman Fire to identify fractional cover of ash, soil,
Fig. 1. Field site locations within the Hayman Fire overlaid on the BAER b
severity. Also shown is an example transect layout, not to scale. One or two t
located on radials off the transects. The Cheesman weather station is shown
charred and green vegetation (Robichaud et al., 2007).
Significant correlationswere found between the unmixing
results and all related ground cover variables. A com-
bination of ash and exposed mineral soil were found to be
indicative of high soil burn severity. The ability to map
post-fire ground characteristics at the sub-pixel scale
presented a detailed and adequate assessment of the post-
fire soil conditions.

The goal of this study was to examine the processed
hyperspectral imagery from the Hayman Fire as a
potential tool for determining post-fire soil water
repellency. The specific objectives were: 1) to examine
the correlations between ground measurements of water
repellency and remotely sensed measures of ash, soil,
scorched and green vegetation; 2) to examine the spatial
relationship between ash cover and soil water repellency
at the field plots; and 3) to use the spatial correlation
urn severity map. Sites were selected in low, moderate, and high burn
ransects were located at each field site, with 4-m-diameter sample plots
for reference.
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between ash cover and soil water repellency to create a
map that indicates the likelihood of strong soil water
repellency across the entire Hayman Fire area.

2. Study area

The Hayman Fire in Colorado was the chosen study
area (approximately centered at 39°9′ N, 105°16′ W)
(Fig. 1). In the summer of 2002, the Hayman Fire burned
more than 55,000 ha within the South Platte River
drainage on the Front Range of the Rocky Mountains,
CO (Graham, 2003). The region is semi-arid, with a late
summer monsoon season characterized by short-dura-
tion, high-intensity storms. The long-term average
annual precipitation is 400 mm at the Cheesman weather
station (39°13′ N, 105°17′ W, elevation 2100 m), with
about 30% of the annual precipitation in July and August
(WRCC, 2007; Finney et al., 2003). This region had
experienced several years of drought, including 2002,
and the accumulation of dry biomass was extensive
(Finney et al., 2003). The region is underlain by the
granitic Pikes Peak batholith, with frequent rock out-
crops. The main soil types are Sphinx and Legault series,
which are coarse-textured sandy loams, gravelly sandy
loams and clay loams (Cipra et al., 2003; Robichaud
et al., 2003). The dominant tree species are ponderosa
pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga
menziesii) (Romme et al., 2003).

3. Research methods

An initial burn severity map of the Hayman Fire was
created from a 16 June 2002 SPOT4 image (Robichaud
et al., 2003; A. Parsons, pers. comm., 2005). This burn
Table 1
Location of field sites, number of plots at each site, and the mean ash cover, w
time and rate at each site

Site Number
of plots

Burn
severity

Latitude Longitud

(N) (W)

L7 18 Low 39°1′5.32″ 105°18′9
L8 15 Low 39°8′51.74″ 105°12′2
L9 15 Low 39°5′30.89″ 105°23′2
L10 15 Low 39°4′3.30″ 105°22′3
M1 9 Moderate 39°1′20.55″ 105°18′2
M2 9 Moderate 39°13′43.94″ 105°18′3
M3 9 Moderate 39°13′49.75″ 105°18′1
M4 15 Moderate 39°8′56.09″ 105°12′4
M5 18 Moderate 39°4′39.83″ 105°16′2
H3 18 High 39°9′59.68″ 105°21′3
H4 18 High 39°6′18.57″ 105°16′4
H5 24 High 39°8′21.96″ 105°21′5
severity map was used by USDA Forest Service Burned
Area Emergency Response (BAER) teams to guide
post-fire rehabilitation, but within the scope of this
project, the map was used only to guide field plot
selection (Fig. 1). In Lewis et al. (2006) this BAER burn
severity map was evaluated and found to be approxi-
mately 70% accurate compared to detailed field
assessments of burn severity. In addition to its
classification from the map, burn severity was also
confirmed by visual evaluation. Areas burned at high
severity were predominantly characterized by scorched
and blackened vegetation and little remaining green
vegetation, as well as extensive exposure of charred soil
and ash. Moderately burned areas were characterized by
a mix of green and scorched vegetation, and patches of
charred soil and ash. Areas burned at low severity were
differentiated by only light and fine fuel consumption
and minimal charred soil exposure (Lewis et al., 2006).

3.1. Ground cover measurements

Ground reference field data were collected between
17 July and 2 August 2002. Approximately 60 sample
plots were selected in each of the three burn severity
classes as delineated by the BAER burn severity map
and confirmed by visual assessment. At each of the 12
field sites, east–west transects were established in
visually homogenous burn sites at least 20 m from
roads. The location, number of plots, and burn severity
class of each of the sites are in Table 1. The transects
were designed to be 200 m in length (Fig. 1), with plot
clusters at 0 m (west endpoint), 50 m, and 200 m (east
endpoint). The locations of the center of each plot
cluster were located with a GPS unit. At each of these
ater drop penetration time (WDPT) and mini-disk infiltrometer (MDI)

e Ash WDPT MDI time MDI rate

(%) (s) (s) (ml min−1)

.07″ 15 106 14 4.6
9.23″ 10 60 10 6.1
1.99″ 17 123 24 3.4
0.54″ 16 121 15 5.0
.07″ 16 202 21 2.8
.35″ 10 154 15 3.0
4.01″ 9 84 5 6.3
6.53″ 16 153 22 2.7
9.89″ 14 168 18 3.3
2.21″ 20 98 18 5.6
8.38″ 43 143 25 3.0
5.46″ 10 87 22 4.8
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center points, three 20-m radials were established at 0,
120 and 240°, respectively, with a tape and a compass.
The sample plots were 4 m in diameter at the end of each
of these radials.

The actual transect lengths were between 50 and
400 m, depending on topography and the uniformity of
burn severity. In the low burn severity class, there were
three 50-m transects with six plots each and five 200-m
transects with nine plots each, for a total of 63 plots along
eight transects. In the moderate burn severity class, there
were six 200-m transects and one 50-m transect for a
total of 60 sample plots along seven transects. In the high
burn severity class, there were five 200-m transects and
one 400-m transect for a total of 60 sample plots along
six transects. The spatial and directional layout of the
transects and sample plots was designed to encompass
the spatial variability of the field measurements by
sampling at short and long distances between sample
plots (35 to 435 m apart) as well as sampling in different
directions so that variation from slope position would be
captured.

Fractional cover of all present ground cover
components was visually estimated within the 4 m cir-
cle at each plot. Minor ground cover fractions, which
were often grasses, forbs, shrubs, woody debris, or
stumps were estimated first. Avalue of 1% was recorded
if there was a trace of the material within the plot. The
more abundant fractional ground cover components
(exposed mineral soil and rock, ash, and litter) were then
estimated with the largest cover component estimated
last. All cover fractions summed to unity. Exposed
mineral soil and rock were considered ground cover for
the purpose of accounting for all space within a plot, and
were combined into a single soil cover fraction. Percent
green and percent char (scorch) of all ground cover
(b1 m high) components were also calculated.

3.2. Soil water repellency tests

The WDPT test was performed every 5 cm along a
0.5-m line (11 measurements, including endpoints).
Each test consisted of a water drop being placed on the
soil surface and recording the time to complete infiltra-
tion. Soils were classified as water repellent when
water drops remained on the soil surface for longer
than 5 s (DeBano, 2000b; Letey et al., 2000). The degree
of soil water repellency was assessed by measuring
the persistence of the drop on the surface for up to
300 s. The median WDPT from each plot was used to
divide the data into three classes based on the classifi-
cation scheme of Dekker and Ritsema (1994): weak (5–
60 s), moderate (61–180 s), and strong (181–300 s).
Four MDI tests were also completed at the same plots
and within 0.5 m of the WDPT tests. The MDI (model
Ml-1) maintains constant 5-mm suction and has a 31-m
diameter porous disk through which the suction of the
soil may break the tension across the plate and allow
infiltration of water into the soil. The MDI was filled
with water and placed on the soil surface. The time to
the start of infiltration was noted (MDI time) up to
1 min, as well as the volume of water that infiltrated the
soil within 1 min (MDI rate). Water repellency was
divided into three classes, based on correspondence to
the established WDPT classes, by the median MDI
rate (Lewis et al., 2006; Robichaud et al., in review):
weak (8 or more ml min−1), moderate (4 to 7 ml min−1),
and strong (0 to 3 ml min−1).

3.3. Aerial hyperspectral image acquisition and
pre-processing

Fourteen adjacent flight lines of airborne hyperspectral
imagery were collected on 10 August 2002 over the
Hayman Fire between 1630 and 1900 UTC (solar noon
1905 UTC). The Probe I whisk-broom sensor was flown
at 2100 m AGL and collected data along a track ~28 km
long and 2.3 km wide—corresponding to a 512 pixel-
wide swath with each pixel 5 m by 5 m at nadir. Reflected
EM energy from the surface was received in 128
contiguous spectral bands that spanned 432 to 2512 nm,
with a spectral bandwidth of 11 to 19 nm. A detailed
description of data acquisition, atmospheric correction,
and image processing can be found in Laes et al. (2004)
and Robichaud et al. (2007).

The resulting georeferenced image was found to have
registration errors of 5 to 10 m (1 to 2 pixels) after
checking the location of about half of the transects
relative to nearby road intersections. Where the flight
lines overlap, up to 30 m (6 pixel) differences were
visible. Fortunately, most of the ground plots did not fall
in these overlap regions between flight lines. In order to
compensate for some of this geolocational uncertainty,
we used the GPS coordinates from the field plots, and
averaged pixel values within a 5-m radius ‘footprint’
around each plot location in extracting the values for
each sample plot.

3.4. Image analysis

The corrected image reflectance data were first
reduced from 115 bands with the ENVI software
minimum-noise-fraction (MNF) transformation to 20
MNF bands. The MNF transform estimated and then
removed the noise from the data, resulting in a reduced
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number of bands that contained the most meaningful
information.

A library of image-derived spectra representing gray
ash (a mixture of white ash and black char), bare soil, and
scorched and green vegetation was created for each flight
line for use in the unmixing process. The Pixel Purity
Index (PPI) routine (Boardman, 1998) in ENVI software
was used to identify the purest pixels, containing one
homogenous cover type, in each flight line. By
examining the spectral signature of each pixel and our
a priori knowledge of most of the fire area we were able
to select pixels in each flight line that represented ash,
soil, scorched and green vegetation. The mean spectrum
of several pure pixels in each class was calculated
for use in the spectral unmixing. All libraries were
transformed to MNF space using the same statistics
file as derived from the MNF transformation of the
corresponding flight line.

Mixture tuned matched filtering (MTMF) partial-
unmixing algorithm (ENVI, 2004) was applied to the 20
MNF-transformed bands on all 14 flight lines of image
data (Boardman, 1998). The MTMF score indicates how
well the image pixel compares to the library reference
spectra (ash, soil, scorched and green vegetation) and
measures how spectrally abundant each material is in the
image pixel. Spectral abundance in an image pixel
corresponds to physical abundance in the same location
on the ground. An MTMF score of zero means no match
to the input endmember and no presence of the material
in a pixel, while a score closer to one indicates a better
match to the input endmember and greater abundance of
the material in the pixel. The output of the MTMF
routine was four MTMF score images: Ash MTMF, Soil
MTMF, Scorch MTMF, and Green MTMF, along with
an infeasibility (IF), or error, image. The IF value shows
how likely or unlikely the match is. In general, pixels
that combine higher MTMF scores with low IF values
are a better match to the endmember spectrum. All
MTMF score images were multiplied by 100 in order
to assess the 1:1 correlations with the ground data.
Individual fractional cover maps of each of the input
Table 2
Means of measured ground cover and remotely sensed mixture tuned match

Ash Ash Soil Soil

(%) MTMF (%) MTMF

Low severity n=63 15 (2.3) 4 (1.2) 27 (3.6) 3 (0.8)
Moderate severity n=60 13 (1.7) 11 (1.7) 39 (3.6) 1 (0.3)
High severity n=60 23 (3.0) 25 (4.3) 59 (3.4) 6 (0.9)

Standard errors are in parentheses.
spectra were created in this process. Table 2 shows
descriptive statistics of ground cover and MTMF scores
by burn severity class.

3.5. Statistical analysis

The nonparametric Spearman rank correlation test
(SAS Institute Inc., 2003) was used to assess the
correlation between field measurements of water
repellency and field and remotely sensed fractional
ground cover measurements at the sample plot
locations. Correlations were regarded significant at p-
valueb0.05.

From previous work (Lewis et al., 2006), we knew a
positive relationship existed between ash cover and
water repellency—as ash cover increases, so does the
strength and degree of water repellency. Since we were
primarily interested in developing a relationship be-
tween ash and water repellency in areas at high risk for
potential post-fire erosion (i.e. high ash cover or strong
soil water repellency), we iteratively reduced the
number of plots by eliminating the ones with the lowest
ash cover (method further described by Mundt et al.
(2006)). For example, in the first test, mean ash cover
and mean MDI rate were calculated for all data, in the
second test the means were calculated only for the data
with greater than 0% ash cover, and in the third test for
data with greater than 5% ash cover. This procedure was
repeated at 5% increments up to 30% ash cover then at
10% increments up to 50% ash cover. A linear
regression was applied to the means of these different
groups, or bins, of data.

The spatial structure of soil water repellency occur-
rence was analyzed using the geoR package (Riberio
and Diggle, 2001) in R (R Development Core Team,
2003). In general, spatial continuity means that two
points close together will have more similar values
than two points that are far apart (Isaaks and Srivastava,
1989). Empirical spherical semivariogram models
(Eq. (1)) were created from the water repellency and
ash measurements for each of the sites to identify the
ed filter (MTMF) scores by burn severity class

Scorched vegetation Scorch Green vegetation Green

(%) MTMF (%) MTMF

60 (4.1) 19 (3.1) 19 (1.6) 11 (1.8)
45 (3.8) 17 (3.0) 7 (1.1) 3 (0.6)
30 (2.2) 4 (1.5) 0 (1.2) 1 (0.2)



Table 3
Spearman correlation coefficients (r) between water repellency measurements: water drop penetration time (WDPT) and mini-disk infiltrometer
(MDI), the mean ground cover measurements, and the mean hyperspectral mixture tuned matched filter (MTMF) scores from the spectral unmixing
results at all 183 field plot locations

WDPT MDI rate MDI time

All data (n=183) (s) (ml min−1) (s)

Ground cover (%)
Ash 0.42 (b0.0001) 0.37 (b0.0001) 0.39 (b0.0001)
Soil −0.22 (b0.0001) 0.12 (0.10) −0.10 (0.19)
Scorched vegetation 0.16 (0.03) 0.09 (0.24) 0.08 (0.29)
Green vegetation −0.16 (0.03) 0.22 (0.004) −0.27 (0.0002)

Matched filter (MTMF) scores
Ash MTMF 0.24 (0.001) −0.21 (0.005) 0.22 (0.003)
Soil MTMF −0.11 (0.15) 0.23 (0.76) 0.03 (0.62)
Scorch MTMF 0.04 (0.56) −0.18 (0.02) 0.15 (0.03)
Green MTMF −0.05 (0.48) 0.13 (0.09) −0.12 (0.09)

Bold correlations are significant at pb0.05 (p-values are in parentheses).
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relationship between point pairs and their respective
distance apart:

g hð Þ ¼ Co þ C
3h
2a

� h3

2a3

� �
ð1Þ

This model estimates the semivariance (γ) between
point pairs as the distance between points, or lag (h),
approaches the practical distance, or range (a), at which
estimations can be made between points (when h≤a).
The nugget (Co) represents the discrepancy between
zero and the model along the y-axis, and the partial sill
(C) is the semivariance that can be predicted by the
model. Beyond the range (when hNa), the value of the
semivariogram is Co+C. Semivariograms indicate both
the variance between points and the range to which
Table 4
Iterative analysis with increasing ash cover on field plots

Ash cover Ash

(%) MTMF

All data (n=183) 17 (1.4) 13 (1.7)
Ash cover N0% (n=165) 19 (1.5) 14 (1.8)
Ash cover N5% (n=112) 26 (1.8) 18 (2.5)
Ash cover N10% (n=79) 33 (2.2) 20 (3.3)
Ash cover N15% (n=68) 35 (2.4) 21 (3.7)
Ash cover N20% (n=42) 45 (3.0) 27 (5.5)
Ash cover N25% (n=38) 47 (3.1) 28 (6.0)
Ash cover N30% (n=24) 57 (3.7) 37 (8.5)
Ash cover N40% (n=16) 66 (3.8) 44 (10.5)
Ash cover N50% (n=11) 74 (3.5) 55 (13.5)

Plots with the least amount of ash were eliminated in each iteration to examin
abundant ash cover. The mean ash cover, ash mixture tuned matched filter
infiltrometer (MDI) time and rate are shown for each bin of data, standard e
the spatial relationship extends. Restricted Maximum
Likelihood (REML) spherical models were fit to each
semivariogram and a summary of the fit parameters was
reported. A greater range indicates a greater distance
of correlation between measurements, and a mini-
mized −Log L is a goodness of fit measure for the line
fit to the data points on the semivariogram. Predictions
can be reliably made between known points when the
semivariogrammodel is a good fit, especially within the
range of autocorrelation.

3.6. Map of soil water repellency

Based on the ash and water repellency threshold ana-
lysis and geostatistical analysis, a map of water repellent
soils was created. The Ash MTMF score image was
WDPT MDI time MDI rate

(s) (s) (ml min−1)

121 (6.8) 18 (1.4) 4.3 (0.2)
128 (7.1) 19 (1.5) 4.1 (0.3)
148 (8.3) 24 (1.9) 3.4 (0.3)
155 (9.5) 25 (2.2) 3.4 (0.4)
164 (10.4) 26 (2.4) 3.2 (0.4)
155 (13.3) 27 (3.2) 3.3 (0.5)
169 (12.7) 30 (3.3) 2.4 (0.3)
159 (15.1) 26 (4.0) 2.7 (0.4)
155 (20.0) 23 (4.6) 2.9 (0.5)
180 (21.2) 29 (5.6) 2.4 (0.6)

e the relationship between ash cover and water repellency in areas with
(MTMF) score, water drop penetration time (WDPT) and mini-disk
rrors are in parentheses.
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limited to only include pixels with an MTMF score of at
least 33. This value was found to be an indicator threshold
for strongly water repellent soils. The range of autocor-
relation between ash and water repellency measurements
was used to create a buffer around these pixels to evaluate
the likelihood of strongly water repellent soils occurring
on or near pixels with significant ash cover.

4. Results

4.1. Correlation analysis

Ash was the fractional ground cover measurement
that correlated most strongly with all three in situ water
repellency measurements (Table 3). Correlation coeffi-
cients (r) ranged from −0.37 to 0.39 (p-valueb0.0001)
Fig. 2. Linear regression between the means of binned water repellency and a
Ash MTMF score. Note these graphs reflect a portion of the data presented in
decreased, the mean ash cover on the plots increased, and the MDI rate values
repellency.
for MDI rate and time to 0.42 (p-valueb0.0001) for
WDPT. A negative correlation withMDI rate and positive
correlations with WDPT and MDI time indicate that as
ash ground cover increased, so did the strength of soil
water repellency. Green vegetation was also significantly
correlated to all water repellency measurements
(Table 3). Correlation coefficients ranged from (r=−0.16,
p-value=0.03) for WDPT to (r=−0.27, p-value= 0.0002)
for MDI time and (r=0.22, p-value=0.004) for MDI
rate. This relationship was opposite that of the relationship
with ash; as green vegetation increased, the severity of the
burn decreased, and the presence and strength of water
repellency decreased.

The correlations between the Ash MTMF scores and
the water repellency measurements were also statistical-
ly significant, WDPT (r=0.24, p-value=0.001), MDI
sh cover plot data: a) MDI rate vs. ash cover (%), and b) MDI rate vs.
Table 4. As plots with low ash cover were eliminated, the n of each bin
decreased. An MDI rate of 3 ml min−1 is the threshold for strong water



Table 5
Model fit parameters from the Restricted Maximum Likelihood (REML) spherical models fit to the empirical semivariograms at each of the field sites

Field variable Model fit
parameters

Field sites

Low burn severity Moderate burn severity High burn severity

L7 L8 L9 L10 M1 M2 M3 M4 M5 H3 H4 H5

Ash cover (%) Partial sill (σ2) 43 17 185 99 45 112 52 11 385 204 658 213
Range (m) 14 17 51 14 36 86 57 13 36 50 49 35
Nugget 494 152 0 289 0 0 0 143 0 0 0 0
Log L −78 −56 −56 −62 −26 −25 −27 −55 −75 −68 −78 −94

WDPT (s) Partial sill (σ2) 347 326 9612 5406 3916 1261 1796 14038 9269 9339 6581 1086
Range (m) 12 16 31 200 98 15 16 92 35 36 31 11
Nugget 5092 5876 0 2327 797 3873 6618 215 0 0 0 4223
Log L −97 −81 −84 −78 −44 −40 −48 −84 −102 −102 −99 −131

MDI time (s) Partial sill (σ2) 3 10 297 327 254 160 126 504 25 373 538 52
Range (m) 12 17 20 38 120 40 56 107 15 50 19 60
Nugget 202 182 78 0 0 0 0 92 288 0 0 364
Log L −69 −57 −61 −60 −31 −28 −30 −62 −73 −74 −78 −102

MDI rate (ml min−1) Partial sill (σ2) 9 0.5 6 14 9 5 2 5 0.25 23 3 14
Range (m) 44 17 35 48 39 41 20 29 8 54 53 47
Nugget 0 9 0 0 0 0 16 7 6 0 2 0
Log L −42 −36 −32 −38 −20 −16 −23 −31 −40 −50 −37 −62

The field variables used in the variogram analysis were ash cover, water drop penetration time (WDPT) and mini-disk infiltrometer (MDI) time and
rate. A higher range indicates a greater distance of autocorrelation between measurements and a minimized Log likelihood (Log L) indicates a
goodness of fit by the semivariogram model to the data.

Fig. 3. Restricted Maximum Likelihood (REML) spherical model fit to
an empirical semivariogram at moderate severity site M4 (n=15). The
range of spatial autocorrelation at this site between MDI rate measure-
ments is 29 m, the nugget is 6.6 and the partial sill is 4.7.
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time (r=0.22, p-value=0.003), and MDI rate (r=−0.21,
p-value=0.005) (Table 3). The only other MTMF scores
that were statistically related to the water repellency
measurements were from scorched vegetation (Scorch
MTMF), MDI time (r=0.15, p-value=0.03) and MDI
rate (r=−0.18, p-value=0.02). Like ash, scorched
vegetation is indicative of an area that burned.

4.2. Iterative threshold analysis

The relationship between ash cover and water
repellency was further examined in areas with predomi-
nant ash cover. As expected, as ash cover increased, so did
the degree of water repellency (Table 4). When examining
all of the data, we found the mean ash cover on the plots
was 17%, the meanWDPTwas 121 s, the meanMDI rate
was 4.3 ml min−1, and the mean MDI time was 18 s.
When this analysis was limited to only plots with ash
cover greater than 50%, the mean ash cover increased to
74%, WDPT to 180 s, MDI rate decreased to 2.4 ml
min−1, and MDI time increased to 29 s (Table 4). Both
water repellency tests indicate strong water repellency at
this level of ash cover.

The data were binned in 5% increments of increasing
ash cover, and the mean value of each bin was plotted to
determine a threshold of ash cover that indicates strong
water repellency (Fig. 2).AnMDI rate below3mlmin−1 is
the threshold for strong water repellency (Lewis et al.,
2006; Robichaud et al., in review). According to the
regression equation in Fig. 2a, when ash cover is greater
than 49%, soils are likely to be strongly water repellent
(R2=0.75). A regression was also calculated between Ash
MTMF score and MDI rate (Fig. 2b). From this equation,
using the sameMDI rate threshold of 3mlmin−1, when the
Ash MTMF score is greater than 33 (33% of a pixel is
spectrally identified as ash), strongly water repellent soils
are likely (R2=0.63). In addition to the regression analysis
shown in Fig. 2, regressions were also calculated between
ash cover and WDPT (R2 =0.62) and MDI time
(R2 = 0.43), as well as Ash MTMF and WDPT
(R2=0.53) and MDI time (R2=0.32).
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4.3. Geostatistical analysis

Spatial relationships between water repellency mea-
surements existed at the scale of 11 to 200 m (Table 5).
An example variogram from moderate severity site, M4,
is shown in Fig. 3. From the REML model-fit statistics,
the range of spatial autocorrelation for the WDPT tests
was between 11 and 200 m, with a mean of 49 m, while
the ranges of autocorrelation for MDI time and MDI rate
were 12 to 120 m (mean 46) and 8 to 48 m (mean 41),
Fig. 4. Water repellency map of the Hayman Fire: A) high burn severity; B) h
team as high severity and areas with high ash cover are overlaid on this map.
high ash cover—these areas should be given high priority for evaluating ru
classified as high burn severity, whereas little ash was mapped. Area (3) show
as high burn severity.
respectively. The range of autocorrelation for ash cover
was 13 to 86 m, with a mean of 38—these values were
similar to the extent of values for the water repellency
measurements. These results suggested that adjacent
areas to the field plots would likely have similar water
repellency characteristics, and that ash cover has a
similar spatial structure compared to soil water
repellency.

The ability to predict water repellency characteristics
between known measurement locations enables us to
igh ash cover; and C) water repellency. Areas identified by the BAER
Area (1) is an example of a large patch of both high burn severity and
noff and erosion potential. Area (2) highlights a large area that was
s a region with several patches of high ash cover that was not classified
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further examine the relationship between the ground
measurements and the hyperspectral imagery. Given that
the image pixels were 5 m, the minimum range of spatial
autocorrelation of water repellency and ash cover at all
sites was 10–15 m (2–3 image pixels), and the mean
range was around 40 m (8 pixels), the adjacent pixels to
the field plots in the imagery within the range of 15 to
40 m can be assumed to have similar water repellency
measurements and ash cover. Within the range of spatial
autocorrelation, measurements can be estimated between
known points, allowing for comparisons across greater
areas rather than between pairs of point measurements.

4.4. Map of soil water repellency

Fig. 4 presents probable areas of strong soil water
repellency after the Hayman Fire. The black pixels have
an Ash MTMF score of at least 33. The buffer around
these pixels is a grayscale, with the next darkest pixels
(dark gray) directly adjacent to a pixel with a high Ash
MTMF score. The pixels get lighter as they are farther
away from high Ash MTMF scores, with white
representing areas greater than 15 m (3 pixels) away.
Overlaid on this image are cross-hatched polygons
representing high burn severity from the BAER map.
Visually, there is a strong correspondence between the
high Ash MTMF scores and high burn severity (Fig. 4C,
area 1). However, there are large patches that were
classified as high burn severity that did not map as ash in
the imagery (Fig. 4C, area 2). Since post-fire rehabili-
tation treatments tend to focus on areas that are classified
as high severity, these are areas that potentially were
unnecessarily treated for erosion mitigation. Alterna-
tively, there are areas that were mapped as high ash cover
and were not classified as high burn severity (Fig. 4C,
area 3). These areas, especially the larger patches of ash,
are at risk for post-fire erosion, yet may have been
overlooked by the BAER team because they were not
classified as high burn severity.

The accuracy of this map was assessed using water
repellency measurements from the field plots. The map
was approximately 50% accurate for predicting strong
water repellency directly from Ash MTMF scores. Of
the 77 plots that exhibited strong water repellency based
on the MDI rate (less than 3 ml min−1), 35 were within
15 m of a pixel with high ash cover. Of the 55 plots
classified as strong water repellency by the WDPT test
(greater than 180 s), 31 were within 15 m of a pixel with
high ash cover. Since the range of spatial autocorrelation
averaged around 40 m for all field tests, a map was
created by applying a buffer of eight pixels to the Ash
MTMF image. The accuracy of this map was much
higher, 68 of the 77 plots (88%) were within 40 m of a
pixel with high ash cover. This map was not shown
because it did not correspond to the burn severity map
very well and appeared to over-predicted ash cover
and water repellency.

5. Discussion

Post-fire ash cover indicates complete or near-
complete combustion of the pre-fire vegetation on the
soil surface (Smith et al., 2005), which usually involves
both high temperatures and long fire residence time.
Thus, it is logical that ash covered the soils that were
rendered most water repellent. This was the reasoning
behind the threshold analysis—we were most concerned
with the areas that had high ash cover, and not the areas
with little or no ash cover. Subsetting the data to only
include areas that had significant ash cover strengthened
the relationship between ash cover and water repellency.
As ash was more predominant on the plots, water
repellency also increased. In our other work (Lewis
et al., 2006; Robichaud et al., in review), we found MDI
values less than 3 ml min−1 to be indicators of strongly
water repellent soils and values greater than 3 ml min−1

to signify low or no water repellency. Although green
vegetation was significantly (negatively) correlated to
increasing water repellency, we did not focus on this
relationship for two reasons. The relationship between
green vegetation and water repellency was not as strong
or statistically significant as with ash, and in a post-fire
situation it is not the ‘green’ areas that are generally of
interest when evaluating runoff and erosion potential.
These areas are typically assumed to be at low risk for
post-fire watershed response, and can naturally help
mitigate runoff, erosion, and aid with fire recovery in
general, if green areas exist within or surrounding
severely burned areas.

A single pixel or plot with high ash cover or strong
water repellency is not the cause for concern when
considering post-fire erosion potential. Larger areas of
adjacent pixels with high ash cover or strong water
repellency, e.g. an entire hillslope, should be evaluated
for erosion risk. In this study, our field sites covered an
area of ~1 ha. One of our high severity sites (H4) had
ash cover near 50% (Table 1). Four sites, M1, M2, M4,
and H4 had mean MDI rates at or below 3 ml min−1.
These sites, especially H4, would be areas to investigate
further for erosion and runoff potential.

Woods et al. (2007) suggested the importance of
connectivity between patches of soil water repellency
when predicting post-fire overland flow. They investi-
gated the spatial variability of water repellency on the
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scale of b1 to N100 m2 and found water repellency to be
patchy and variable at this scale. Variability at such a
fine scale likely led to the spatial variability we
measured at the greater ~1 ha scale. Woods et al.
recommended sampling points for water repellency no
closer than 1 m apart, and to sample areas larger than
100 m2. We investigated spatial patterns in water
repellency on the scale of 0.5 to 400 m and found that
using geostatistics alone, we could predict between
water repellency measurements up to about 40 m apart,
but beyond that range we needed to incorporate a more
continuous variable (ash cover) in our predictions. The
correlation between ash cover and strong water
repellency allowed for the creation of a likelihood
map of water repellency across the entire Hayman Fire
area. Woods et al. (2007) proposed that 35 to 75% water
repellency on a site greater than 100 m2 may induce
overland flow. These numbers roughly correspond to
our findings of greater than 33 to 50% ash cover on a site
indicating strong water repellent soil conditions. Both
studies generally indicate a need for attentiveness if
more than one-third of a large area is covered in ash or
strongly water repellent.

6. Limitations

Ideally, the hyperspectral imagery would have been
acquired simultaneously with the field spectra and
ground data, but smoke, weather, and logistical issues
made a time delay unavoidable. The most likely changes
in the ground conditions at the times that the ground data
and imagery were collected are ash removal and char
redistribution due to wind and rain, increased needlecast
on the ground, and green revegetation, particularly near
water sources. We were not able to quantify any of the
changes at the plots. However, casual field observations
during this time period and at the time of image
acquisition suggested that changes in these conditions
were minor and that the image captured the ground
conditions at the time of ground data collection similar to
the post-fire conditions. As with most remotely sensed
imagery, canopy cover often occludes the soil surface,
making ground to image correlations difficult. This was
less of an issue in the areas burned at moderate and high
severity, because there was little remaining canopy
vegetation. Fortuitously, these were also the areas we
were most interested in, because they had the most ash
cover and water repellent soils.

There were some apparent registration problems with
the imagery. These were most obvious near the edges of
flight lines. However, most of our field sites did not fall in
these regions. In order to compensate for some of the
error, we took amean ‘footprint’ around each plot to better
capture the conditions in the surrounding area and not just
at a point location. The results from the geostatistical
analysis also increased our confidence in the data because
the minimum range of autocorrelation between measure-
ments was 2–3 pixels. Even if our plot locations were
off by a few meters due to mis-registration, they were
likely representative of the actual location.

Geostatistical predictions based on a limited number of
actual sample points can only be useful within a limited
range of the samples. A stronger spatial autocorrelation
allows for a more confident prediction over a greater area,
but at the scale we are interested in (55,000 ha), the scale
of autocorrelation between our measurements is not
sufficient to use kriging techniques (Isaaks and Srivas-
tava, 1989) to predict water repellency across the entire
burned area. Instead we used Ash MTMF score, which
was a continuous variable across the entire fire area, and
created a buffer around these pixels based on the
geostatistical range of autocorrelation with water repel-
lency. This map was based on the distance to pixels with
high ash cover—the closer to high ash cover (at least
33%), the higher the likelihood of strongwater repellency.
This map has limitations because it was based on modest
correlations between point measurements of ash cover
and soil water repellency that are extrapolated over the
entire fire area. We were not able to directly map water
repellent soils, so remotely sensed ash cover was used as
an intermediate variable. Thus, we refer to this map as a
likelihood map of soil water repellency, and only suggest
that it be used in conjunction with other data as a guide for
post-fire assessment.

A map of soil water repellency combined with burn
severity, slope, aspect, soil, and other GIS layers would
allow for a detailed examination of a burned area for
post-fire erosion potential (Elliot et al., 2006). A map of
the likelihood of water repellency over the entire fire area
is a piece of information currently not available for
BAER teams. However, the techniques presented here
are not yet “rapid response” operational, and not
available in the days immediately following a fire
when post-fire rehabilitation treatment plans are made.
As remote sensing technology advances and imagery
becomes available more quickly and image processing is
less laborious, these procedures and resulting products
will provide detailed, useful information about post-fire
soil conditions not previously available.

7. Conclusions

Immediate post-fire measurements of ground cover and
water repellency indicated that ash cover, both measured
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on the ground and remotely, was the variable most
significantly correlated to strong water repellency after the
HaymanFire. Greater than 49% ash covermeasured on the
ground and 33% detected in the remotely sensed image
indicated strongly water repellent soil conditions. Water
repellent soils can greatly reduce post-fire infiltration
potential, thus, areas with extensive ash cover should be
examined closely for potential increased runoff and
erosion. Based on a geostatistical analysis, spatial
autocorrelation between ash cover and water repellency
fieldmeasurements was found to exist on the scale of 15 to
40 m, which allowed for additional predictions between
and beyond field plot locations. Remotely sensed ash
cover was used as a continuous variable across the entire
Hayman Fire to map patches of ash with at least 33%
cover including areas within 15 m of these patches. The
significant correlation between ash cover and soil water
repellency allowed for mapping strong water repellent soil
conditions. These results, combined with other informa-
tion typically available in a post-fire situation, such as
burn severity, soil characteristics, and slope, increase the
ability to examine the potential for post-fire runoff and
erosion. Further work is needed to improve the correla-
tions between field and remotely sensed measurements,
and to make high-resolution imagery available and easier
to process within a few days immediately following a
wildfire.
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