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Abstract: As wildland fires amplify in size in many regions in the western USA, land and water
managers are increasingly concerned about the deleterious effects on drinking water supplies.
Consequences of severe wildfires include disturbed soils and areas of thick ash cover, which raises
the concern of the risk of water contamination via ash. The persistence of ash cover and depth
were monitored for up to 90 days post-fire at nearly 100 plots distributed between two wildfires
in Idaho and Washington, USA. Our goal was to determine the most ‘cost’ effective, operational
method of mapping post-wildfire ash cover in terms of financial, data volume, time, and processing
costs. Field measurements were coupled with multi-platform satellite and aerial imagery collected
during the same time span. The image types spanned the spatial resolution of 30 m to sub-meter
(Landsat-8, Sentinel-2, WorldView-2, and a drone), while the spectral resolution spanned visible
through SWIR (short-wave infrared) bands, and they were all collected at various time scales. We
that found several common vegetation and post-fire spectral indices were correlated with ash cover
(r = 0.6–0.85); however, the blue normalized difference vegetation index (BNDVI) with monthly
Sentinel-2 imagery was especially well-suited for monitoring the change in ash cover during its
ephemeral period. A map of the ash cover can be used to estimate the ash load, which can then be
used as an input into a hydrologic model predicting ash transport and fate, helping to ultimately
improve our ability to predict impacts on downstream water resources.

Keywords: post-fire; remote sensing; wildfire ash; spectral indices; Sentinel-2; hydrologic response

1. Introduction

Consistent and accurate mapping of wildland fires is a critical function for active fire
management as well as for post-fire mitigation and monitoring regimes. Wildfires play
important ecological and hydrological roles in forests and have become larger and more
frequent in the western USA in recent years [1]. This trend is expected to endure as summers
continue to be longer and drier, and the effects of fire suppression and wildland–urban
interface (WUI) encroachment persist in many regions [2–4]. Severe wildfires considerably
alter the ground surface composition in spatially complex ways [5] due to the variable
combustion of organic materials (vegetation, downed wood, litter, and duff), which can
result in secondary effects such as increased surface runoff and erosion [6–8]. Wildfires
combust organic matter into ash or char ranging from gray or white non-aggregate or
airy materials to black, charred, and semi-recognizable organic matter. The presence of
ash cover indicates combustion at high temperatures and long fire residence time [9–11].
Following Brewer et al. [12], for our purposes, “ash” is functionally defined as partially or
fully combusted organic material that is available for transport via wind or water.

The presence of ash can alter the hydrologic response through the formation of surface
seals in post-fire systems by creating a low conductive ash layer through soil pore seal-
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ing [13–15]; through an ash crust [13,16]; or through ash chemistry [17,18]. The increased
potential for hydrologic activity can persist for several years depending on the severity
of the wildfire disturbance [19]. Post-fire runoff and erosion can indicate soil (sediment)
transportation but may also include ash transport and the potential nutrient and chemical
pollutants attributed to ash [20–22]. Water quality degradation is likely if elevated runoff,
soil erosion, or ash transport occurs after the wildfire [18,22,23]. Scientists have raised
awareness regarding wildfire ash impacts on drinking water supplies particularly in areas
that experience severe wildfires [24,25].

Ash is highly transportable via both wind and water; therefore, its attenuation rate
after a fire is a function of the cumulative erosivity of wind and rainfall events [26]. Over
time and after intense precipitation or wind events, ash changes color, density, and is
ultimately transported from the site by water, wind, or is fully incorporated into the soil.
Little is known about the persistence of ash on site in the post-wildfire environment, neither
in terms of its duration, depth, nor fate [16,27]. To predict or model the effects of ash on
post-fire runoff and erosion, it is first necessary to quantify the extent (cover) and load (e.g.,
mass per area, t·ha−1) of ash while it is still on site [18]. Ash may change color over time
as it is wetted or incorporated into the soil. The cover, load, and spatial distribution of
ash must be considered when evaluating post-fire runoff and erosion potential [15,19,26].
Therefore, timely operational mapping of ash, similar to rapid burn severity mapping [28],
would provide water managers with information to help minimize impacts on drinking
water [5,22]. Accuracy and efficiency of information delivery are needed in real-time but
also in the months and years following large wildfires.

Post-fire ash transport models are being developed [24] and a principle motivation of
this study is working towards a methodology for quantifying ash after wildfires for use
in these models [29]. To predict the transport and fate of ash (or any pollutant), a model
needs a spatially explicit estimate of the amount or load available for transport. Ash is
ephemeral and variable [30,31], and the relationship between burn severity and ash cover,
depth, and load is not always predictable [27]. Optical remote sensing has shown promise
for mapping ash cover [9,32,33] and even load [34], although these methods have not been
widely implemented. A spatially explicit map of ash load is used as an input into a hydro-
logic model, such as the Water Erosion Prediction Project cloud-Wildfire Ash Transport
and Risk (WEPPcloud-WATAR) model, and together with topographic, soil, and climate
data, it is used to predict the delivery of ash and the associated contaminants to water
bodies [24]. These modelling exercises are practical and applied rather than theoretical and
are widely used by land managers around the world to plan and mitigate post-wildfire
hydrologic disasters. Thus, reliable ash cover and load estimates are needed for model
inputs, which greatly affect model predictive capabilities. Additionally, developing an
operational method to map ash that is repeatable, time-sensitive, and can be seamlessly
incorporated into watershed models is desirable.

Landscape-scale wildfire mapping is largely achieved with remote sensing across
various platforms at multiple spatial, spectral, and temporal scales. Methodological ap-
proaches are widely implemented with Earth observation (EO) satellite data. Satellite
imagery is used to create burn severity maps which highlight the change between pre and
post-fire vegetation and soil conditions [28,31,35–37]. More recently, drones or unmanned
aircraft systems (UASs) have been utilized to map fire perimeters and collect images of the
burned area [38]. UASs are becoming a more common component of wildfire responses
by providing emergency personnel with rapid situational awareness as well as creating
maps of the burned areas [39]. Unlike a manned aircraft or a satellite under emergency fire
situations, a UAS deployment can be more flexible and safer in terms of timing, location,
and environmental conditions [40].

There are timing, data quality, and data quantity tradeoffs and considerations when
choosing an imaging platform [41]. A UAS can collect ultra-high spatial resolution and
true-color images on demand that are readily interpretable by non-experts [42], but often
these have fewer spectral bands, limiting their use for higher-level image analysis. High
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spatial resolution commercial satellite imagery such as WorldView-2 (MAXAR, Longmont,
CO) has 2 m pixels but must be tasked (ordered) and can be costly. An EO satellite such as
Sentinel-2 which has 10 m pixels and a 5-day Earth-repeat orbit delivers visible through
short-wave infrared (SWIR) bands, which are commonly used for post-fire mapping.

The goal of this study was to develop an operational and deliverable methodology
for mapping post-fire ash, particularly one that can be used on different platforms and
at multiple spatial scales depending on the data available and the ‘cost-benefit’ of the
management need. We summarize our findings in a decision table, providing guidance on
imagery, timing, and cost for post-fire mapping. To reach our study goal, we addressed
the following specific objectives: (1) evaluate post-wildfire ash cover and depth in situ and
monitor the change during its transitional period up to 90 days post-fire; and (2) compare
moderate and high-resolution remotely sensed imagery for mapping ash cover and persis-
tence over a time series. Meeting these objectives would help overcome current barriers to
developing an operational mapping technique that can later be directly incorporated into
hydrologic modelling.

2. Materials and Methods
2.1. Site Descriptions

The Mesa Fire started on 26 July 2018 in the Payette National Forest in Idaho and
burned 14,100 ha over 4 weeks. Extreme fire behavior (https://www.fs.usda.gov/Internet/
FSE_DOCUMENTS/fseprd616768.pdf, accessed on 10 September 2021) occurred during
the first several days, driven by near record-high temperatures and strong winds. Approxi-
mately 400 ha within the Payette National Forest boundary were classified as having high
soil burn severity and field sites were located in low, moderate, and high soil burn severity
areas as determined from the burn severity map (Figure 1).

The Mesa Fire burned in a range of vegetation types from grassland to sagebrush-
steppe; however, our study area coincided with the area of the highest severity burn, which
was primarily classified by LANDFIRE (https://landfire.gov/, accessed on 10 September
2021) as Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest. Weather
data from the nearest SNOTEL (Snow Telemetry) station Squaw Flat (1900 m elevation) gave
an average annual precipitation (period of record: 1981–2010) of 1126 mm and maximum
and minimum temperatures of 34 and −24 ◦C (https://www.wcc.nrcs.usda.gov/wps/
portal/wcc/home, accessed on 6 October 2021). We also collected rainfall data with an
onsite tipping bucket rain gauge (Figure 2).

The Redford Canyon Fire burned 335 ha in July 2017 on the Colville Indian Reservation
in Washington (Figure 1). We sampled this small fire as a pilot-scale study the year before
the Mesa Fire. Burn severity was mixed but primarily classified as moderate; however,
there was sufficient ash on the ground for our research objectives. The fire burned in a
temperate dry forest with open stands of Douglas-fir (Pseudotsuga menziesii) mixed with
ponderosa pine (Pinus ponderosa) [43]. Field data were collected shortly after the fire in
2017: on 25 July, 8 August, 30 August and 27 September. Ash depths were collected at
9 spatially distributed plots along each of the 4 transects, along with spectral libraries of
several different ash conditions. Sentinel-2 images from 9 July, 27 July, 18 August and
27 September in the same year were used to calculate spectral indices to compare to the
field conditions and to the patterns in the imagery from the Mesa Fire.

https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd616768.pdf
https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd616768.pdf
https://landfire.gov/
https://www.wcc.nrcs.usda.gov/wps/portal/wcc/home
https://www.wcc.nrcs.usda.gov/wps/portal/wcc/home
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Figure 1. The locations of the Mesa (ID) and Redford Canyon (WA) fires. The satellite imagery is a Sentinel-2 true color 
image obtained shortly after the Mesa Fire was contained. The burn severity inset map shows the distribution of the Mesa 
field transects (T1–T6) with 5 radial plots at each endpoint. 

 
Figure 2. Cumulative rainfall precipitation and rainfall intensity during the study period from the 
onsite rain gauge at the Mesa Fire. 
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field transects (T1–T6) with 5 radial plots at each endpoint.
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2.2. Field Site Characterization

Field visits were initiated as soon as it was deemed safe to enter the burned area by
local fire management teams [44]. Our goal was to sample sites at least every 2 weeks
in the first month, with visits extending to every 4 weeks before significant freezing or
precipitation occurred. Post-fire ash is ephemeral but the timeline of persistence is relatively
unknown. The Mesa Fire field visit dates alongside the corresponding image collection
dates are provided (Figure 3). The vertical shading clusters field visits with the closest
Sentinel-2 pass.
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field data collection. Abbreviated imagery types: WorldView-2 (WV-2) and Unmanned Aircraft
System (UAS). The number inside the square indicates the field visit number. Only the satellite
imagery was used analytically, while the UAS imagery was used observationally.

Six 200 m transects were located in the Mesa Fire in low, moderate, and high-burn
severity areas as identified from the burn severity map, which was created from classified
Sentinel-2 imagery (Figure 1). At each transect endpoint (0 m and 200 m), 4 radial plots were
located 30 m away, giving each endpoint 5 plots (1 center, 4 radial), totaling 10 plots per
transect. Similar protocols were used at the Redford Canyon pilot study, with 4 transects
and 9 radial plots per transect. Considering that all plots were to be revisited several
times over 3+ months, extreme care was taken to minimize disturbance and GPS locations
were collected with a Trimble Geo-XT GPS unit (Trimble Inc., Sunnyvale, CA, USA) with
sub-meter accuracy. The initial visit to each plot was marked with a pin flag and each
subsequent visit was approximately 1 m uphill. All plots were sampled 3 times and the
2 high-severity transects (Mesa Fire only) were sampled 4 times (Figure 3).

At each plot for each field visit, 4 high-resolution photos (Figure 4) were taken of the
4 quadrants of the 1 m plot. Field photographs of each quadrat, totaling an area of 1 m2,
were later loaded into the Cover Monitoring Assistant [45], for which the area was overlain
by a grid for analysis. Each location was interpreted and counted, totaling to 100 points
per quadrat, to provide an estimate of the macroscopic ash and char cover per quadrat.
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Figure 4. Photo series of two Mesa Fire high-burn severity plots over time (a) T1200 and (b) T20 randomly selected from the
high-severity plots on either end of a 200 m transect. Each photo is cropped to approximately 0.25 m2 to show greater detail
(one quadrant of the full 1 × 1 m plot).

A 0.2 m metal frame was used to delineate a smaller random portion of the plot for
5 ash-depth measurements and a total ash collection. A surface soil composite sample was
collected below the ash layer at the center plot of each transect end. Soil and ash samples
were collected in sealed bags and taken to the lab for drying and weighing. Ash bulk
density was calculated from the weight and volume of some of the ash samples.

By the end of the study period (90 days post-fire), all plots had received rain (Figure 2)
and experienced freeze–thaw cycles. It was difficult at this point to discern dark, wet soil
from dark, charred soil (Figure 4); thus, the field sampling was concluded.

2.3. Image Acquisition and Analysis

All Mesa Fire imagery was collected during the period of 8 July to 20 October 2018,
which spanned from 21 days prior to the fire ignition to ~90 days after the fire (Figure 3).
The only imagery that was used for the Redford Canyon Fire was Sentinel-2 imagery, which
was collected over a post-fire period of 80 days.

Sentinel-2 and Landsat-8 images were selected from open access data archives for
quality, limited cloud cover, and for timing relative to the field data collections. Sentinel-2
(S2) was launched by the European Space Agency (ESA). Revisit time was approximately
5 days and the spatial resolution was from 10 m to 20 m, spanning the visible through
the SWIR region (Table 1). The Landsat-8 (L8) satellite is a collaboration between NASA
(National Aeronautics and Space Administration) and the USGS (United States Geological
Survey), and has a revisit frequency of 16 days and a 30 m spatial resolution over all bands.
Both S2 and L8 data were freely available for download via open-access hubs. All S2
images were downloaded and pre-processed to the bottom of the atmosphere reflectance
with Sen2Cor [46] using the sen2r package in R [47]. Landsat Level-2 surface reflectance
science products were downloaded. We expected that both the higher revisit frequency and
higher spatial resolution of S2 images would lend to improvements over Landsat; however,
Landsat data has been the baseline post-fire imagery and provides a benchmark for post-fire
remote sensing studies over many years, therefore we included it in our analysis.
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Table 1. Satellite information: central bands, bandwidth span, and pixel size (spatial resolution). NIR is near-infrared and
SWIR is short-wave infrared.

Landsat-8 Sentinel-2 WorldView-2

Band
Central

Wavelength
(nm)

Span
(nm)

Pixel
(m)

Central
Wavelength

(nm)

Span
(nm)

Pixel
(m)

Central
Wavelength

(nm)

Span
(nm)

Pixel
(m)

Blue 482 [B2] 435–451 30 492 [B2] 459–525 10 478 [B2] 450–510 1.8
Green 561 [B3] 452–512 30 560 [B3] 542–578 10 546 [B3] 510–580 1.8
Red 655 [B4] 636–673 30 665 [B4] 650–681 10 659 [B5] 630–690 1.8
NIR 865 [B5] 851–879 30 833 [B8a] 1 780–886 10 831 [B7] 770–895 1.8

SWIR1 1609 [B6] 1567–1651 30 1614 [B11] 1569–1660 20 - - -
SWIR2 2201 [B7] 2107–2294 30 2202 [B12] 2115–2290 20 - - -

1 Band 8a is the narrower NIR band and has a closer spectral correspondence to the NIR band of Landsat-8.

A single WorldView-2 image of the entire burned area that had been previously tasked
by another user was retrieved from the digital archive (https://discover.digitalglobe.com/,
accessed on 8 September 2021). WorldView-2 (WV2) (MAXAR Technologies, Longmont,
CO) imagery has a pixel size of 1.8 m across the visible and near infrared (NIR) bands
(Table 1). One WV2 image of the entire burned area spanned 2 tiles, which were down-
loaded and already georeferenced. The residual geometric error was corrected by automatic
orthorectification to a 10 m DEM (digital elevation model) reference image using rational
polynomial coefficients (RPCs) provided by the vendor using a nearest neighbor method
(in ESRI ArcMap 10.5.1). The resulting root mean square error (RMSE) of the position was
below one pixel. A dark object subtraction was done to remove atmospheric scattering
using band minimums (in ENVI 4.2, L3Harris Geospatial, Boulder, CO, USA) and to correct
the data to surface reflectance.

Ancillary UAS imagery for this project was acquired in collaboration with the faculty
and students at Northwest Nazarene University (NNU; Nampa, ID). Images were collected
with a DJI (Da-Jiang Innovations) Phantom 4 drone with a 12-megapixel Red-Green-Blue
(RGB) color camera [40]. The imagery acquired with the UAS was taken while flying at an
altitude of 120 m above the ground level, giving the photos a spatial resolution of 6 cm per
pixel. Due to time and data volume constraints, only the area over the study transects was
imaged. Three separate images were acquired that intentionally coincided with the field
sampling dates (Figure 3).

2.4. Endmember Spectra Collection

Endmember spectra of soil, ash, and char were collected after the Redford Canyon Fire
on a cloud-free day within 2 h of solar noon using an ASD Pro-FR field spectroradiometer
(Analytical Spectral Devices, Inc., Boulder, CO, USA). Spectra were collected with the
bare-tip foreoptic (field of view 22◦) pointed at the target material from a height of ~1 m.
The ASD Pro-FR sampling interval was 1.4 nm over the 350 to 1050 nm wavelength range
and 2 nm over the 1000 to 2500 nm range. These measurements were interpolated at every
1 nm wavelength and reported in 2151 contiguous channels. The field spectrometer was
calibrated against a Spectralon (Labsphere, North Sutton, NH, USA) 100% reflective panel
immediately before and at frequent intervals during field spectra collection to account for
changing light and atmospheric conditions. Absolute reflectance was calculated at the
time of data collection for all spectra by dividing the field reflectance by the bright target
reflectance.

2.5. Spectral Indices

Prior to a wildfire under healthy green vegetation conditions, vegetation strongly
absorbs incoming radiation in the blue and red spectral regions, while after a wildfire,
reflectance increases in the NIR and SWIR regions due to the loss of green vegetation
and the increase in both soil and charred materials [48,49]. Thus, the common spectral

https://discover.digitalglobe.com/
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indices used to evaluate landscape conditions post-wildfire are often differenced ratios
of these visible and infrared regions since they emphasize the pre to post-fire change in
spectral reflectance of burned areas. The most commonly used index for post-wildfire
severity mapping is the Normalized Burn Ratio (NBR) (Table 2), which is calculated from
the NIR and SWIR bands, and frequently differenced (dNBR) to evaluate the change
in the pre-fire condition to the post-fire condition. To date, dNBR has most often been
calculated with 30 m Landsat imagery and classified into burn severity classes for use by
post-fire assessment and management teams. While Landsat and dNBR have been the
benchmarks for burn severity mapping, many have questioned its applicability across
ecosystems [9,37,50] and the continually growing availability of other satellite and airborne
imagery have led researchers to investigate other platforms and methods.

Another index that has been used operationally for burn severity mapping is the
Normalized Difference Vegetation Index (NDVI) (Table 2), which calculates the normalized
ratio of NIR and red wavebands, and is well-accepted in the literature as a means to assess
vegetation conditions and the presence or absence of vegetation [41,51]. Both NBR and
NDVI metrics allow for differentiation between healthy green vegetation cover and bare
soil, and the change due to fire [52]. Specific to the Sentinel-2 satellite, it has been found
that the narrow NIR band (B8a) and the longer SWIR band (B12) were the most suitable
bands for detecting burned areas [53], as these bands correspond most closely to Landsat-8
bands B5 and B7 (Table 1).

Several other less established indices have been assessed in the literature for post-fire
mapping, most of which are akin to variations on the NBR or NDVI using differenced
ratios of visible, NIR, and SWIR bands. The Blue Normalized Difference Vegetation Index
(BNDVI) (Table 2) has been used for crop health evaluation and burned area mapping,
and is sometimes favored with aerial imagery because the blue band has a low signal-to-
noise ratio and may help account for atmospheric interference [54,55]. The Normalized
Difference Infrared Index (Table 2) uses a different SWIR band than the NBR and a variation
has been used to map ash load in Australia given that ash absorbs solar energy within the
0.84–1.66 µm range [34].

Table 2. Spectral indices used to evaluate ash. Band specifications: blue is p480 nm (L8 band 2, S2
band 2; WV2 band 2); red is p660 nm (L8 band 4, S2 band 4; WV2 band 5); NIR is p860 nm (L8 band
5, S2 band 8a; WV2 band 7); SWIR1 is p1610 nm (L8 band 6 and S2 band 11); and SWIR2 is p2200 nm
(L8 band 7 and S2 band 12).

Scheme 2 Equation Citation

Normalized Burn Ratio NBR = (NIR−SWIR2)
(NIR+SWIR2)

Key and Benson 2006 [35]

Normalized Difference
Vegetation Index NDVI = (NIR−Red)

(NIR+Red)
Tucker 1979 [56]

Blue Normalized Difference
Vegetation Index BNDVI = (NIR−Blue)

(NIR+Blue)
Wang et al. 2007 [54]

Normalized Difference
Infrared Index NDII = (NIR−SWIR1)

(NIR+SWIR1)
Chafer et al. 2016 [34]

2.6. Statistical Analysis

A linear mixed-effects model [57] was run in SAS (ver. 9.4, SAS Institute, Cary, NC,
USA) to evaluate post-fire ash cover as the dependent variable using BNDVI index values,
post-fire day, and burn severity fixed effects; the plot as a random effect; and sample
day as the repeated measure unit. Least significant differences were used to compare
differences in Tukey-adjusted least-squared means of ash cover by post-fire day and by
burn severity. Similarly, a mixed-effects model with a repeated measure of the sample
day was run for two simpler analyses: (1) to assess the difference between spectral indices
over time, where the index value was the dependent variable and time post-fire was the
independent variable, and (2) to assess the difference in the blue reflectance over time with
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two imagery types, with reflectance as the dependent variable and time as the independent
variable. All models were considered different at p < 0.05.

The distributions of the data and residuals from the model results met all assumptions
of normality.

3. Results
3.1. Mesa Fire Ash Cover

The two high-burn severity transects T1 and T2 were sampled 24 days after the fire
started. Ash cover averaged more than 60% at the time of the first sampling (Figure
5, Table 3). The remaining transects (T3–T6) were sampled later (post-fire day ~40) and
had an average ash cover of 40–60%. Although these transects were sampled for the first
time at a later date, it is apparent from Figure 5 that ash cover on T1 and T2 did not
change considerably between days 20–60; there was also no measurable rainfall until day
70 (Figure 2). Transects 3–6 generally had lower mean ash cover at all points in the study
period compared to T1 and T2, as expected due to their lower burn severity. When the ash
depths were evaluated over time, all plots had 5–30 mm of ash initially and decreased to
0–5 mm of depth by the end of the study. T1 and T2 were not outliers in terms of greater
ash depth, regardless of their higher ash cover. The relationship between ash cover and
depth was variable when all plots were considered, but there is a significant (p < 0.002)
relationship between cover and depth on the high-severity transects (R2 = 0.52) (Figure 5).

Table 3. Mean transect characteristics measured at the initial visit. Ash bulk density was calculated in the lab from high-burn
severity transects Mesa Fire T1 and T2, and Redford Canyon TR3. A “-“ indicates not collected.

Initial Ash Data

Fire Transect Burn Severity Plots (n) Ash Bulk Density
(g·cm−3) Cover (%) Depth (mm)

Mesa T1 High 10 0.28 90 17
T2 High 10 0.44 76 14
T3 Low/moderate 10 - 29 23
T4 Low/moderate 10 - 58 14
T5 Low/moderate 10 - 46 7
T6 Low/moderate 10 - 54 9

Redford TR1 Moderate 9 - - 13
Canyon TR2 Moderate 9 - - 10

TR3 Moderate-high 9 0.32 - 13
TR4 Moderate 9 - - 8
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Evaluating ash cover via photos and over time is a refined process [18], and care is
taken to minimize subjectivity. However, factors such as lighting, shadows, soil moisture,
and natural incorporation of the ash into the soil over time can affect the appearance of
the ground surface, making it more difficult to distinguish between soil and ash. Figure 4
shows two time series of a single plot; the photos are not taken in the exact same location
each time due to the ash collection but rather they are each about a meter apart. The plot
on T1 ranges from a mean of 93% ash cover initially to 64% by the end of the study. This
plot was picked to highlight the visible change due to precipitation on post-fire days 70–75
(Figure 2). The plot on T2 ranges from 80 to 33% ash cover. This series shows the natural
incorporation of the ash into the soil, the dispersion due to water and wind, as well as the
increase in litter cover over time. As shown by Figure 4, there was very little visible ash left
on site that was not incorporated into the soil by 90 days.

3.2. Spectral Band Analysis: Mesa Fire Plots

Sentinel (S2) bands’ reflectance was extracted at the Mesa Fire plot locations for each
image date (Figure 6). The visible bands, namely the blue, green, and red bands, all showed
an increase in reflectance immediately post-fire and then a decrease over time. The NIR
band sharply decreased after the fire and remained fairly stable for the study duration.
The SWIR bands more closely followed the pattern of the visible bands. It is the change in
reflectance due to the fire (e.g., loss of green vegetation and increased soil and ash cover)
that makes these bands suitable for post-fire mapping. Ratioing or differencing the NIR
band (decrease due to fire) with a visible or SWIR band (increase due to fire) emphasizes
this change.
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3.3. Disturbance Indices: Mesa Fire Plots

The pre-fire index values from the Mesa Fire are shown in dark gray and were higher
across all plots and indices; these can be considered a baseline for pre-fire conditions
(Figure 7). The first post-fire index values are in light gray, and for the BNDVI and NDVI,
these values represent the greatest change from pre-fire values across all transects (Figure 7).
For the NDII and NBR indices, the first post-fire values were indeed greatly lower than the
pre-fire; however, the subsequent post-fire images from post-fire days 45–85 were nearly
indistinguishable on most transects.
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Figure 7. Reflectance indices calculated from Sentinel-2 data over 4 image dates from the Mesa Fire. Each transect has two
data points, representing each endpoint. Transects T1–T2 are high-burn severity and T3–T6 are low/moderate severity.
Blue Normalized Difference Index (BNDVI); Normalized Difference Vegetation Index (NDVI); Normalized Burn Ratio
(NBR); Normalized Difference Infrared Index (NDII). Different lowercase letters on each plot indicate significant differences
between image dates at p < 0.05, as evaluated with the mixed model.

In the initial evaluation of these indices, it was important that: (1) there was a signifi-
cant change from the pre to post-fire value; (2) the high and low/moderate severity plots
were objectively distinguishable from each other based on index values; and (3) there was
a notable recovery over time. All indices fit the first criteria: the dark line (pre-fire day 15)
was markedly different from the post-fire image values. Transects T1 and T2 had the high-
est ash cover of all the plots and this is observable from the plots in Figures 5 and 7 across
all indices. This confirms that each of these indices are appropriate for post-fire mapping
and identifying high-severity conditions, thus criteria 2 was met as well. However, unlike
any of the other indices, BNDVI values changed substantially between each image date,
showing a stair-step return towards the initial condition. The other indices were more
clustered together over the post-fire image dates.

The results of the mixed models of the data in Figure 7 confirms that BNDVI was
the only index that significantly differed between the initial (pre-fire day 15) and the first
and second post-fire (post-fire days 15 and 45) image dates. By the final image date (post-
fire days 85), the BNDVI values were not significantly different than the pre-fire values,
indicating a trend towards the pre-fire conditions. Of all four indices evaluated in Figure
7, the BNDVI appears to best fit the third criteria we were assessing to map a “recovery”
during the study period, as ash dissipated from the plots.

As disturbance indices, all four indices from the Mesa Fire data show notable devia-
tions between the pre-fire and post-fire values (Figures 7 and 8); however, BNDVI values
indicate a gradual trend towards the pre-fire values over time in a way the other indices
do not (Figure 8). The change in ash cover over time is included in Figure 8 for direct
comparison. The shape of the disturbance curves of the BNDVI and ash cover plots are
similar over the study period. We acknowledge that most broadband indices, particularly
NDVI, were founded to evaluate vegetation (i.e., greenness), therefore it isn’t surprising
that NDVI, for example, does not show a significant “recovery” in the first 90 post-fire days.
The fire began in late July and the study progressed through the fall; substantial green-up
would be expected the following spring. BNDVI has essentially the same index structure as
NDVI, with the blue band ratioed with the NIR rather than the red band. Our data suggest
that there is a meaningful change in the blue reflectance over time that is indicative of the
ash and soil conditions we monitored in this study.
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comparison to the spectral indices.

3.4. Redford Canyon Fire Pilot Study

To evaluate if the BNDVI may be suitable for mapping or monitoring ash more
universally, we extended our analysis to include data from the 2017 Redford Canyon Fire.
Field spectra of ash and ash–char–soil mixes were collected (Figure 9). The light gray ash is
representative of ash shortly after a fire prior to wetting or redistribution. The continuum of
light ash to dark ash to char–soil mixes represent ash over time as it becomes incorporated
into the soil layers, as well as represents levels of combustion: a light ash color indicates
complete organic combustion, while a darker ash color or char often reveals incomplete
organic combustion. As expected, the uncharred soil had the highest reflectance, followed
by the light gray ash, and then the reflectance generally decreased as the soil fraction of
the soil–ash and soil–char mix increased. This is useful information because it confirms
the decrease in reflectance over the full spectral region, not just in the visible region. The
reflectance values were extracted at visible and NIR wavelengths (Figure 9), and these
values were used to evaluate if a NIR/blue band ratio (as used in BNDVI) may be more
indicative of ash than an NIR/red ratio (NDVI). Although the overall reflectance of ‘dark
char soil’ was lower than that of ‘light ash’ or ‘soil’ (Figure 9), the ratio of the reflectance in
the NIR region to the blue (e.g., NIR/Blue) was lowest for the ‘light ash’ (0.23/0.14 = 1.6),
followed by ‘dark char soil’ (0.06/0.03 = 2.0) and ‘soil’ (0.33/0.15 = 2.2). This is why the
BNDVI was lowest for the lightest colored ash (0.24) and increased with darker colored
ash or char (0.33), and also over time as ash was incorporated into the soil (0.38). The
reflectance of the blue band was higher relative to the NIR band with a lighter colored ash.

Similar to the Mesa Fire, BNDVI values from Redford Canyon Sentinel-2 imagery
decreased immediately after the fire and increased steadily over the first 80 post-fire days
(Figure 10). The plots with the deepest ash (e.g., TR3) and likely the highest ash cover
had the lowest BNDVI values. All plots in this fire were classified as moderate-burn
severity, thus the BNDVI values were higher overall than at the Mesa Fire in the 80-day
post-fire period.
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is at p833 nm (S2 band 8a) from the Redford Canyon field spectra. Several wavebands around 1400 and 1900 nm were
removed for atmospheric scattering noise.
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3.5. Comparing Imagery after the Mesa Fire

The images in Figure 11 are ordered by increasing spatial resolutions from Landsat
(30 m pixels) at the top (a) to the UAS imagery with 0.6 m pixels at the bottom (d). At the
full-scale (left column), all four image types appear to provide the same basic visual
information: areas of green vegetation and the soil, ash, and char mix. However, when
zoomed in to a single transect, the additional spatial information that the higher resolution
imagery provides becomes clearly apparent. It is only at the 2 m scale of the WV2 imagery
that tree crowns are visible and much finer features, such as fallen trees and stumps, ash
patches, a small stream, road pullouts, and a field vehicle, are all recognizable. The UAS
imagery improves upon the visible resolution of the satellite WV2 imagery and provides a
clear picture of the ground conditions. Although three images were collected with the UAS,
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they were increasingly plagued by shadows as the season progressed and it was difficult
to calibrate between images (i.e., light balancing, atmospheric conditions, and sun angle),
which made higher-level processing untenable.
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Figure 11. Spatial comparison of (a) Landsat-8 (30 m pixel; day 43), (b) Sentinel-2 (10 m pixel; day
45), (c) WorldView-2 (2 m pixel; day 62), and (d) a UAS image (0.6 m pixel; day 58) at the field sites.
The right column is a zoom-in on Transect 2 at the Mesa Fire, which is a high severity transect that
had an average ash cover of 85% on 8 September (day 44) and 80% on 22 September (day 58).

3.6. Mesa Fire UAS Image

The camera mounted on the UAS only collected RGB bands, which limits much of
the image analysis that can be done with the reflectance imagery. The RGB values were
also scaled at 0–255 (rather than at 0–1 for reflectance for satellite imagery). However, after
discovering the relationship between the blue band and ash cover over time, we compared
the change in blue reflectance between the S2 imagery and the UAS during the study period
(Figure 12). The pattern of significant reflectance decrease in the first 90 post-fire days
was statistically similar between the two sets of data. This may indicate that the addition
of an NIR band (available on many UAS-mounted systems) could provide an ultra-high
resolution ash cover map via the BNDVI.
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3.7. Mesa Fire WorldView-2 Image

We calculated the BNDVI from a single-date WV2 image (26 September; post-fire
day 62). The ash cover from 3–4 field visits to each plot were subset into two groups
corresponding to pre and post- WV2 image collection to evaluate the time period(s) in
which the field data correlated to the WV2 BNDVI values (Figure 13). The correlation
coefficients (r) were only significant for the early time period (p < 0.001). The most notable
difference between the two regression lines was the intercept, while the slopes remained
largely unchanged between time periods. The earlier set of field data represents ash pre-
rainfall (post-fire days 26–58), while the later set was measured after significant rainfall
(days 65–90). Over the course of the study, most transects lost ~30% ash cover (Figure 5),
which roughly corresponds to the difference in the x-axis values (ash cover) for a given
BNDVI value. For a control or unburned reference, typical BNDVI values from soil and
green vegetation are shown on the y-axis on the graph. As ash cover decreased over time
on the burned plots, the BNDVI values approached those of uncharred soil. Other high
BNDVI values on this figure are likely from areas that were lower-burn severity and had
partial green canopy above the plot that influenced the pixel reflectance.

3.8. Mesa Fire Landsat Data

Landsat imagery provided essentially the same spectral information as Sentinel, with
the major difference concerning the spatial resolution (pixel size: Landsat 30 m compared
to 10 m Sentinel). Sentinel is also available on a higher temporal frequency, but in this
study, we looked only at one image per month for both L8 and S2. We expected BNDVI
calculated from L8 to be similar to that calculated from S2 (Pearson correlation, r = −0.57)
but were somewhat surprised to find stronger correlations between Landsat data and the
field data (r = −0.82). From strictly a correlation perspective, Landsat BNDVI values were
more strongly correlated to the ash cover data. However, from a mapping perspective
(Figure 11), it is clear that if S2 data is available, the additional spatial detail it can provide
should be advantageous.
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Figure 13. Mesa Fire ash cover from two discrete field sampling periods compared to single-date WorldView-2 BNDVI
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green vegetation), while light gray pixels are areas of ash cover. The graph on the right compares BNDVI and ash cover
values with the data subset in the pre and post-WV2 image collection.

3.9. Mesa Fire Classified Sentinel-2 Time Series

The Sentinel-2 BNDVI data were classified as follows: BNDVI values less than 0.5
corresponded to ash cover greater than 60%, which can be considered high ash cover;
BNDVI values between 0.5 and 0.7 indicated more moderate ash cover in the range of
40–60%; and BNDVI values greater than 0.7 were low ash cover (likely scattered ash cover
where present) trending towards green vegetation or other unburned covers. From the
time series of classified S2 images (Figure 14), it is possible to see how the ash cover in the
area around the plots changed over time. The density distribution graphs of the ash cover,
depth, and BNDVI values from the field plots concur with the classified images. Ash cover
and depth decreased over time, while BNDVI values increased.

A linear mixed-effects model validated that the significant change in ash cover over
time was mappable as a function of BNDVI, time, and burn severity (Table 4). The sig-
nificant decrease in ash cover between the post-fire days 45 and 85 was seen on all plots
and was due to the nearly 40 mm of rainfall that was recorded in that period. The striking
difference between the ash cover on the high and low severity plots was also significant,
with about 2.5 times more ash cover on the high-severity plots throughout the study period.
This is important from a mapping and modeling perspective, as it is more important to
be able map and predict the areas that are of the greatest risk, which, in this study, are the
areas with the highest ash cover and subsequently an elevated risk of post-fire runoff, soil
and ash erosion, and water contamination.
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Table 4. Results of the linear mixed-effects model (Ash cover = BNDVI ◦ post-fire day ◦ burn severity).
Significant differences in the least-squared means between the post-fire day and severity groups are
indicated by different letter groups (p < 0.05).

Post-Fire Day Burn Severity Ash Cover
Estimate (%) Standard Error Letter Group

15 71 6.7 a
45 69 4.6 a
85 48 5.5 b

High 82 5.4 a
Low/moderate 32 4.0 b

4. Discussion
4.1. Change in Ash over Time

Ash cover and depth decreased over the study period regardless of the initial condi-
tions or burn severity. The two high severity transects, Mesa Fire T1 and T2, had around
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80% average ash cover at the time of the first sampling on post-fire day 26. Ash cover
on these transects remained higher than the low/moderate transects through the entire
study period, while ash depth decreased to nearly negligible levels on all plots. Ash cover
decreased on all transects at about the same rate, while ash depth change was more vari-
able depending on the initial ash depths (Figure 5). Determining ash cover is a subjective
practice (see Figure 4); it is easier to quantify when it is light-colored and distinct from
the underlying soil layers. As ash is redistributed by wind and water, and is incorporated
into the soil below, it is increasingly difficult to distinguish from soil [18]. Measuring ash
depth is less subjective; a flat-bottomed ruler was used to take several measurements at
each plot and it is usually obvious by the change in texture and density when the ruler
has hit soil. By the end of the study period, most plots had reached 0–5 mm of depth on
average, even if there was observable ash cover. Considering we are defining ash as all
combusted organic material that is mobile through the force of wind or water, it is often
necessary to differentiate ash and soil by feeling the texture. In order to limit subjectivity
between field samplers, we calibrated between team members. As can be seen in Figure 5,
ash cover and depth decreased fairly consistently over all transects, indicating that our
sampling efforts were relatively uniform.

One of our objectives was to determine how long ash persists on site and how often
ash should be sampled in order to capture its dissipation over time. In theory, one could
take ash cover and depth measurements daily or weekly, but that is generally not possible
in practice. Our early field sampling dates were 2 weeks apart, progressing to about
4 weeks by the end of the study. This timing captured the gradual decline in ash cover
and depth, with the biggest changes occurring as a result of rainfall, which was also found
in [27]. Due to diligent monitoring, we were able to sample shortly after each precipitation
event. Similar timing and sampling protocols were followed at both the Mesa Fire site
and the pilot study of the Redford Canyon Fire site, and the results were similar in that
most ash was gone by 80–90 days post-fire. Both fires occurred in the late summer and
had convective precipitation events in the fall that led to ash mobilization. In contrast, the
2020 Cameron Peak Fire in Colorado burned from mid-August through mid-December
(https://inciweb.nwcg.gov/incident/6964/, accessed on 9 September 2021). Much of the
burned area did not receive rainfall before snowfall and when the snow melted in the
spring of 2021, the ash was mostly undisturbed (C. Rhodes, pers. comm.). However, in
2021, managers were still concerned about ash movement into drinking water reservoirs;
thus, the ash will ultimately be displaced by wind or water, and the importance of mapping
and modelling its transport is still critical. There were several large wildfires in western
Oregon in the fall of 2020 that burned the source watersheds of the cities of Eugene and
Salem, and our research team was tasked with watershed modelling with an emphasis on
ash movement into drinking water supplies (City of Salem, OR, USA, wildfire complexes
BAER teams, pers. comm). These real-world examples emphasize the need for informed
and efficient ash mapping and modelling technology.

The relationship between ash cover and depth is not as robust as we had expected it to
be (Figure 5). Although there is a non-significant correlation when all data are considered
(r~0.2), when only the high-burn severity sites are evaluated, the correlation is significant
(r = 0.7; p < 0.002). The spatial and temporal variability of both the cover and depth across
transects, and the entire burned landscape make it difficult to predict depth from cover,
but it is more predictable in areas of greater ash cover. The passive optical sensors that are
onboard the satellites we investigated in this study are able to map ash cover, but depth is
not perceptible strictly from an aerial viewpoint. Ideally, a strong relationship between ash
cover and depth would allow one to infer depth and ash load from a known or predicted
ash cover value. Perhaps the most important finding regarding the change in post-fire ash
over time is the timeframe in which it is detectable and measurable on site and regarding
the rainfall needed to initiate transport. Some degree of cover persisted on all transects
throughout the study period, however, ash depth approached zero by 90 days (Figure 5).
From Figure 2, we see that there was no precipitation until post-fire day 65 and the first

https://inciweb.nwcg.gov/incident/6964/
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rainfall events greater than 10 mm were on post-fire day 70 (12 mm) and 75 (15 mm). After
post-fire day 75, cumulative rainfall was just under 40 mm. Ten-minute rainfall intensity
was less than 10 mm h−1 for all of these events, which is a relatively low intensity. From
these data, it appears that ash movement is instigated by a 10 mm rainfall event and that
10–30 mm of ash can be completely removed by 40 mm of rain. Pereira et al. [27] found
substantial ash movement with 80 mm of rainfall. Woods and Balfour [26] reported a return
to ‘no ash’ runoff and sediment conditions by the spring after a fall wildfire in Montana,
which fits the same time frame as we measured.

In addition to ash cover and depth measurements, a composite ash sample was
collected in a 400 cm2 frame, which was oven-dried and weighed, and the ash bulk density
was calculated in the lab for the three highest severity transects (Table 3). As emphasized
in the introduction, the WATAR hydrologic model that is used to predict ash transport
requires ash load (mass per area) as an input [24]. From the ash cover, depth, and weight
data, we can calculate an ash load for each transect; similarly, we can also do this using
the calculated bulk density. The difficult or inexact part of these calculations is in the
composition of the field ash samples. The field samples contain mostly ash; however,
soil, small rocks, and uncharred organics are inevitably inside the samples, rendering the
weights questionable. From the field weights (data not shown), the ash bulk density ranged
from 0.4 to 3.2 g·cm−3 (mean 1.2 g·cm−3) compared to our “pure” sieved ash sample bulk
density of 0.3–0.4 g·cm−3 (Table 3). Calculating ash load with a bulk density of 0.3 g·cm−3

and a depth of 1 cm of ash at 60% cover yields 72 g of ash, while the same calculations
with a bulk density of 1.2 g·cm−3 yields 288 g of ash, 400% more for the same area. We are
emphasizing these discrepancies to bring attention to the variability inherent when using
real data to build models.

4.2. Spectral Bands and Indices

Many other researchers have mapped post-fire ash, char, and soil burn severity [18,30,
32–34,58,59]. However, our questions were focused on the timing of the ash mapping, the
temporal persistence of ash, and the level of measurement precision necessary to reliably
quantify ash. We were also interested in pursuing multiple mapping platforms with their
inherent spatial and spectral differences, with the goal of an operational methodology that
was practical to be implemented multiple times in a short timeframe. Thus, our spectral
band and spectral index analysis were not solely influenced by the strongest relationship
with ash at any given point. Instead, we needed a mapping method that fit several criteria:
that it (1) detected a significant change between pre and post-fire conditions; (2) portrayed
a notable recovery towards the pre-fire condition that matched the temporal change in
ash; and (3) had the ability to distinguish between high and low ash cover. Soil burn
severity is often mapped after wildfires to determine which areas are at the highest risk for
runoff or soil erosion [19,28,60], and abundant bare soil (lacking protective organic cover)
over more than 60% of the area is often a threshold for increased erosion potential [61].
Similarly, we found a natural breakpoint in the ash cover data, indicating that more than
60% of the ash was classified as high ash cover. A map was created using classified BNDVI
values (Figure 14), highlighting areas that had greater than 60% ash cover and expressed
the change in ash cover over time.

While not especially common in vegetative or burned area indices, the blue spectral
region has been associated with accounting for atmospheric effects when used as a burned
area index [55]. The Landsat and Sentinel satellite imagery evaluated in this study were
corrected to the surface reflectance or bottom of the atmosphere (BOA) reflectance, while
the WorldView imagery was corrected with a dark object subtraction. Both corrections
were implemented to minimize atmospheric effects during analyses. The BNDVI rather
than the NDVI is sometimes used when crop mapping with aerial imagery that is difficult
to atmospherically correct. Others have mapped burned vegetation as well as vegetation
conditions using the BNDVI [62,63]. Ngadze et al. [64] found that the NIR and blue bands of
L8 and S2 contributed most to burned-area detection over two study sites over a savannah
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landscape in Zimbabwe. Our working theory is that ash and char can reflect gray, which
is in the blue spectral region, and the absence of green vegetation is detectable with the
BNDVI. Indeed, it appears that there is a greater change between the pre and post-fire
blue rather than red values on the ash-covered plots (Figure 9), and that the blue values
return almost to the pre-fire condition by the end of the study (Figures 6 and 12). Many
of the indices we evaluated initially were correlated with the post-fire ash cover, yet only
the BNDVI reflected the return to pre-fire conditions in the 90-day study period (Figure 7).
Additionally, the similar relationship between ash cover and BNDVI over time on two fires
is encouraging for further investigation in other post-fire environments.

Ash mapping using the BNDVI fits within the operational goal of this study. The blue
and NIR bands are available on all EO satellites. SWIR bands are also generally available,
albeit at a coarser spatial resolution (30 m on Landsat and 20 m on Sentinel). Thus, a valid
concern is the loss of spatial resolution. Looking at the ash cover photo series of the post-fire
days (Figure 4), the very fine-scale variability of the post-fire conditions is apparent. While
it is not practical, nor is it likely necessary to map ash (or other post-fire attributes) at the
sub-meter scale (as with a UAS), the loss of information with too large of a pixel is a concern
(as with Landsat) [32]. Patches of ash would need to be large (>60 m) to be detectable at
the 30 m scale of L8 imagery. While Landsat and Sentinel images are commonly used in
post-fire mapping, the tradeoff is in the ability to map a large area very quickly without a
huge data cost, with the assumption of some loss of detailed ground information [65]. NBR
is a common burned area index [36] and has been used successfully to map char [9,31,66].
The NDII is the basis for the ash load index Chafer et al. [34] developed to successfully
map ash in Australia. Both of these established indices utilize SWIR bands because of the
significant change in pre to post-fire reflectance that highlights the loss of vegetation and
the increase in both soil and other non-organic covers.

For this study, we deliberately chose to not do higher-level analysis, such as spectral
unmixing [30,33,66], fusion of multiple data layers [67], or data mining of our suite of
field and image data [64]. Within the time constraints of post-wildfire severity assessment
and hydrologic modelling predictions, there is not always time for more complex analysis
techniques. Satellite imagery is collected repeatedly as it is available and the first cloud- and
smoke-free image that captures the entirety of the burned area is used by land managers to
evaluate the condition of the burned area and guide mitigation decisions. The timeline is
generally “as-soon-as-possible” and is almost always accomplished within 2 weeks of fire
control. The 2-week window has historically been tied to the availability of Landsat satellite
data, which has a return period of 16 days; in recent years, post-fire maps have started
using Sentinel data with its 5-day return period. The burn severity mapping protocol
is widely accepted and highly standardized, and can be accomplished quickly without
extensive expertise [28]. A key goal of this study was to evaluate a similar methodology
for ash cover that was reproducible and could eventually be made operational. The recent
surge of UAS technology and accessibility is also likely to alter the post-fire mapping
arena [38,39,68]. Imagery will be available within hours, not days, and the image resolution
(spatial scale) will be very fine. UASs often have cameras with visible bands and many have
an NIR band as well (far fewer have SWIR bands). An ash map created with BNDVI would
be reproducible on any imaging platform that has an NIR band, allow more flexibility
regarding the decision for spatial or timing considerations.

4.3. Considerations and Decision-Making Tool

There is a cost–benefit evaluation that must be done when deciding which imagery to
use for post-fire mapping (Table 5). Considerations include image or platform availability,
timing, cost, and spectral and spatial resolution [69]. Less tangible factors involve the
practical application or operational implementation of a particular technology. For time-
sensitive image collection and rapid data needs, the chosen technology needs to be available,
reliable, and consistent.
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Table 5. Post-wildfire ash mapping cost–benefit considerations with image extent approximately normalized to 100 km2.

Platform/Satellite Bands Used
(as Available)

Acquisition/Return
Period

Cost per
100 km2

Time to
Process

Area and
Specifications

Data
Volume

UAS Specs: RGB (NIR) As collected $16,000 1

(16 days)
Days 4 km2

3-band
Ultra-high

(1.5 GB)

Pros:

+ very high spatial resolution
+ easily interpretable by novice
+ becoming more mainstream
+ safer than in-person reconnaissance in a post-fire environment

Cons:

• high data volume
• specialized processing equipment
• limited data analysis
• costly and time intensive to collect
• expensive to contract for both collection and processing

World View-2 Specs:
RGB/NIR
(SWIR on

WV-3)
Tasked/as ordered $2500 Hours

100 km2

orthorectified
4-band

Moderate
(300 MB)

Pros:

+ high spatial resolution
+ availability of NIR band
+ moderate data volume
+ can be tasked to area of interest within days

Cons:
• moderately expensive to task
• no automatic collection
• need for orthorectification and atmospheric correction

Sentinel-2 Specs: RGB/NIR/SWIR Automatic/5–10
days Free Hours

100 km2

orthorectified
12-band

Moderate
(600–800

MB)

Pros:

+ moderate spatial resolution
+ weekly automatic collection
+ high current interest by researchers and scientists
+ availability of data management and processing scripts in R and Python

Cons: • images may be plagued by clouds or smoke
• moderate data volume necessitates resampling of area of interest

Landsat-8 Specs: RGB/NIR/SWIR Automatic/16 days Free Hours
300 km2

orthorectified
11-bands

Moderate
(900+ MB)

Pros:

+ benchmark standard of post-fire mapping
+ repeatable and reliable
+ near-automatic processing for many applications
+ bi-monthly return period

Cons: • lowest spatial resolution of image in this study
• in general, too coarse to capture the variability and change in post-fire ash over time

1 This is an approximate fair-market value of the past 2 years (~$1000/day). This cost can vary widely, especially as UAS ownership and
instrument availability increase.

Benefits of L8, S2, and WV2 data include consistency in the data products. Each scene
is collected in a single or small number of multiple tile(s) at a consistent elevation and sun
angle per tile. This makes processing across images, combining and mosaicking images,
and time-series analysis practical, and the derived data products generally have a high
level of accuracy [70]. This is more difficult with a UAS but can be accomplished with very
consistent flight plans and data collection [41].

UAS imagery is often very high resolution; however, collection logistics are time-
consuming and have more room for error in terms of elevation, angle, cloud cover, shad-
ows, mechanical breakdown, and camera issues. The image acquisition time using a UAS
can also be considerable. For instance, the minimum area that can be tasked (ordered)
for WV2 imagery is 100 km2 (10,000 ha); it would take multiple days or multiple instru-
ments to image that area via UAS. WV2 has a sun-synchronous orbit, data collections are
illuminated, and it can collect 1 million km2 per day (https://resources.maxar.com/data-
sheets/worldview-2, accessed on 13 September 2021). S2 tiles are also 100 km2 and L8 tiles
are even bigger (180 km2), and both have the benefit of being a single file, which makes

https://resources.maxar.com/data-sheets/worldview-2
https://resources.maxar.com/data-sheets/worldview-2
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processing more streamlined. Data volume is a consideration for data management as
well as for processing time. For example: the 8 September UAS image at its native 0.06 m
resolution is 1.5 GB of data in a three-band file (Table 5). Resampled to 2 m via bilinear
resampling, the data volume is reduced to 16.5 MB. Each operation on the full resolution
image took 30–60 min while processing the 2 m file and operations were << 1 min long.

The pros and cons in Table 5 are applicable for other post-fire (or other disturbance)
mapping considerations. Managers and data scientists need to prioritize their image needs
as well as and time and financial constraints when selecting an imaging platform. We
also acknowledge that oftentimes it is solely an availability issue, and for that reason, we
have presented a case for mapping ash with several different platforms with reasonable
success. As a final recommendation, however, for the goals of this study, Sentinel-2 seems
to best-suited for mapping ash over time when the eventual next step is to incorporate the
results into other models.

5. Conclusions

Post-wildfire ash cover and depth were evaluated from multiple platforms at various
spatial and temporal scales, and we found that ash persisted onsite with little change
until the first significant rainfall event (10 mm). Several other low intensity rain events
in the first 90 post-fire days resulted in most of the ash being removed from the burned
areas. Two high-burn severity field transects had 70–80% ash cover initially, while the
remaining mixed low and moderate burn severity transects started with 50–60% ash cover.
Ash depths were more variable and ranged from 5 to 30 mm initially, decreased to 0–5 mm,
and were not as dependent on burn severity. Since ash depth was less than 5 mm after
80–90 days, the risk of transportable ash decreased to a negligible degree.

We demonstrated relationships between the ash cover and several common vegetation
and post-fire spectral indices, but the one that most closely fit the trend of the change in ash
cover over the study period was the blue normalized difference vegetation index (BNDVI).
The BNDVI time series matched the ash cover and depth trends over 90 days. Additionally,
we found that a practical resolution for mapping ash was with either 2 m pixels (WV2) or
10 m (S2). Pixels in this range captured the variability of the ground conditions while also
ensuring that the data volume and analysis time ‘cost’ were manageable. A monthly time
scale was appropriate to monitor the change in ash, particularly since rain events seemed
to be the primary driving force for mobilizing the ash. In terms of spectral resolution
(available wavebands), WV2, S2, and L8 all have the necessary visible and NIR bands
for creating time series ash maps with BNDVI. Therefore, the Sentinel-2 imagery best fit
the criteria because the data are free; are available every 5 days; the data volume of the
10 m pixels are reasonable to manage; and its accessibility and formatting would easily
lend itself to moving towards operational methodologies that could be used for post-fire
hydrologic modelling.
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