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A B S T R A C T

Post-fire assessment is made after a wildfire incident to provide details about damage level and its distribution
over burned areas. Such assessments inform restoration plans and future monitoring of ecosystem recovery. Due
to the high cost and time to conduct fieldwork, remote sensing is an appealing alternative to assess post-fire
condition over larger areas than can be surveyed practically in the field. The aim of this study is to use remote
sensing data to characterize post-fire severity at tree level in a mixed conifer forest following the Cascade and
East Zone megafires of 2007 in central Idaho, USA. We used remote sensing metrics derived from Airborne Laser
Scanning (ALS) data (2008) and high-resolution QuickBird (QB) multispectral satellite imagery (2007–2009) for
calibrating and validating predictive models with field data (2008). We compared fire effects on trees in open
canopies within recent fuel treatments to similar trees in closed canopies on adjacent, untreated sites. We ob-
served more trees with charred crowns in high fire severity sites, mostly untreated, whereas we observed more
trees with live crowns in low fire severity sites, independent of the treatment. Individual trees were more ac-
curately detected from ALS data in treated sites with open canopies than untreated sites with closed canopies.
For detected trees, the response variables predicted from ALS and QB metrics were total height (Ht), crown base
height (CBH), total basal area (BAT), live basal area (BAL), scorched basal area (BAS), charred basal area (BAC)
and crown severity (CS). None of the selected QB metrics were strongly correlated with the selected ALS metrics,
which justified combining both data types into the predictive models. Random Forest regression models com-
bining ALS+QB metrics or using ALS metrics alone performed similarly but clearly better than models using
only QB metrics. This study shows the superiority of ALS data to high resolution, multispectral QB imagery for
mapping fire severity at tree level. Managers with limited resources to plan for restoration of fire affected forests
are advised to prioritize spending for data collection on ALS data and a modest number of field inventory plots,
rather than QB or other broadband satellite imagery.

1. Introduction

Wildfires suppression in the western U.S. costs billions of dollars
annually and places firefighters and the public at risk (NIFC, 2019).
Many advocate an increase in fuel treatment implementation to alter
fire behavior and effects and promote successful fire suppression at a
lower cost (e.g., Cohen, 2000; Lentile et al., 2006; Ellison et al., 2015;
Hudak et al., 2011a; Swetnam et al., 2015). Over the last 20 years,
efforts to alter hazardous fuels have been ongoing with emphasis on
treating areas where people and their property reside, often referred to
as the Wildland Urban Interface (WUI). It is assumed that these fuel

treatments will alter fire behavior and severity to allow for fire sup-
pression opportunities and produce post-fire outcomes that are socially
acceptable. Fuel treatments are designed to reduce hazardous fuels
focus on four forest structural and compositional characteristics that
include altering surface fuels, ladder fuels, crown fuels, and shifting
species composition (Agee and Carl, 2005), but in some cases are not
sociable acceptable in all conditions (Molina-Terrén et al., 2016). Sur-
face fuels typically are treated either through prescribed fire, grapple
piling, or mastication. Thinning tree crowns and thinning from below
are applied to separate crowns and remove ladder fuels. Fire-resistant
species are often favored over non-fire-resistant species (Graham et al.,
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2004; Hurteau and North, 2010). These treatments are designed to
reduce fire behavior and mitigate fire severity in case a wildfire occurs.
However, there are mixed results indicating as to whether fuel treat-
ments alter fire effects when a wildfire does burn through these treat-
ments (Hudak et al., 2011a). Another reason is that research on fuel
treatment effectiveness is still needed because the frequency that a
wildfire will test a fuel treatment is low as a percentage of the fuel
treatments implemented.

Most large wildfires have a post-fire assessment to inform managers
on where and how much the fire affected the soils and vegetation. Fire
severity can be either defined to the loss or decomposition of organic
matter aboveground and belowground (Keeley, 2009) as the first-order
fire effects, such as how much of the duff, logs, and other dense organic
matter on the soil surface is consumed (Ice et al., 2004). For trees, as
suggested by Hudak et al. (2007), sites may be classified as low severity
when live (green) crowns are predominate, as moderate severity when
scorched (brown) crowns are predominant, and as high severity when
charred (black) crowns predominate. The spatial distribution of fire
severity and consequently the identification of the tree crown severity
class (live, scorched or charred) are key factors that may be used to
quantify the impact of fires and vegetation response, and consequently
guide post-fire management responses(Montealegre et al., 2014).
Knowledge about the crown severity of each tree helps to predict future
site conditions. Given that mapped tree crowns capture the spatial
distribution of trees, tree crown severity maps could be used to develop
more precise, site-specific forest and fire management plans (Kim et al.,
2009). Remote sensing tools have potential to assess post-fire impacts
on vegetation structure and physiology, which is important to under-
stand the fire severity effects on post-fire ecosystem processes in small
areas (i.e., plots and pixels) or at the tree level using high resolution
data (Kokaly et al., 2007).

The use of remote sensing data to understand fire effects over large
areas has been well studied at the landscape level using moderate re-
solution (e.g., Landsat) satellite imagery (e.g., Miller and Yool, 2002;
Miller and Thode, 2007; Hudak et al., 2007; French et al., 2008;
Verbyla and Lord, 2008; Veraverbeke et al., 2011). Prior studies typi-
cally involved identification of unique spectral signatures associated
with burn areas (Holden et al., 2010) or snags (Pasher and King, 2009),
or the use of combined spectral and texture features to identify forest
gaps (Barton et al., 2017). Although satellite remote sensing has been
shown to be an essential technology for studying post-fire con-
sequences, the traditional and older generation sensors such as Landsat
and SPOT have a number of limitations with regard to spectral, spatial
and temporal resolution (Steininger, 2000). These limitations might be
overcome using a newer generation of sensors with higher spatial re-
solution such as QuickBird (QB) to more accurately resolve smaller
landscape features, including trees. Spectral vegetation indices such as
Normalized Difference Vegetation Index (NDVI, Tucker, 1979) and Red-
Green Index (RGI, Coops et al., 2006) can be used to differentiate live
trees from dead trees. High resolution imagery also has been used to
detect burn severity from wildfire (Holden et al., 2010; Holden et al.,
2012). Recognition of fire-affected tree attributes such as percent of
live, scorched, or charred crown may facilitate the selection of which
trees to salvage, or to leave as potential seed sources (Lentile et al.,
2006). In addition, wildlife habitat relationships can be mapped, vali-
dated, and improved when habitat components such as live, scorched,
and charred crown trees are spatially mapped, which is a valuable step
for management and conservation applications (Vogeler et al., 2016).

The combined use of high-resolution, passive optical multispectral
imagery with active sensors could provide more accurate post-fire in-
formation than either sensor type alone. Fire severity estimations from
active sensors are more sensitive to disturbance effects on forest
structure than passive satellite sensors (McCarley et al., 2017). Ex-
amples of active sensors include Radio Detection and Ranging (radar)
and Light Detection and Ranging (lidar) (Tanase et al., 2010, 2011;
Kane et al., 2013). Airborne lidar (also known as Airborne Laser

Scanning - ALS) is an example of an active remote sensing technology
capable of simultaneously characterizing terrain and vegetation struc-
ture across large spatial extents (Hudak et al., 2009). ALS has increased
the accuracy and efficiency of large-scale forest inventories and wildlife
habitat studies (Næsset, 2002; Maltamo et al., 2006; Martinuzzi et al.,
2009).. ALS data have been used in fire studies to estimate fuel para-
meters to use as input into fire behavior models, such as crown bulk
density or height to live crown (Andersen et al., 2005; Agca et al., 2011;
Skowronski et al., 2011), as well as to assess changes in forest structure
(Wulder et al., 2009; McCarley et al., 2017). Although ALS data are
limited in spatial and temporal coverage and come at a relatively high
cost to project managers (Vogeler et al., 2016), their rich 3-D in-
formation of forest structure make them relevant for a variety of natural
resource management applications (Hudak et al., 2009).

Numerous studies have explored combining multiple remote sensing
datasets and corresponding field data for modeling forest attributes
(e.g., Hudak et al., 2006; Dalponte, 2018; Goetz et al., 2010; Bright
et al., 2012; Bright et al., 2014). However, few studies have tested this
combination in the post-fire environment and at the individual tree
level (Wulder et al., 2009; Swetnam et al., 2015; Casas et al., 2016)
between treated and untreated stands. The objective of this study was to
characterize post-fire total crown height (Ht), crown base height (CBH),
total basal area (BAT), live basal area (BAL), scorched basal area (BAS),
charred basal area (BAC) and crown severity (CS) classes at tree level in
a mixed conifer forest from one-year post-fire ALS and either im-
mediate, one-year or two-year post-fire high-resolution, multispectral
QB images.

2. Methods

2.1. Study area

The study focuses on Secesh Meadows and Warm Lake, two forested
communities in the wildland-urban interface (WUI) of central Idaho
that had been protected with WUI and Firewise fuel treatments prior to
the Cascade and East Zone megafires of 2007 (Graham et al., 2009;
Hudak et al., 2011a,b). The WUI treatments were implemented from
2000 to 2006 on National Forest lands on the outskirts of both com-
munities (Fig. 1), whereas Firewise treatments (not shown) were im-
plemented on the private lands. Pile and burn fuel treatments were
implemented at Secesh Meadows, while at Warm Lake there was a mix
of pile and burn, mastication, and underburn treatments (Hudak et al.,
2011a).

2.2. Field data collection

Trees (n= 880) were tallied in August 2008 using 20 paired plots
designed to assess effectiveness of mechanical fuel treatments for mi-
tigating severe wildfire effects (Hudak et al., 2011a). The treated plot of
each pair was randomly located inside the treatment unit, whereas the
untreated plot was situated in a random location with a similar slope
and aspect just outside the treatment unit (Fig. 1). Thirteen paired plots
(i.e., n= 26) were situated in the Secesh Meadows study area while
seven paired plots (i.e., n= 14) were situated in the Warm Lake study
area. Each plot was 0.04 ha in area (11.3 m radius). All trees> 12 cm
were tallied for diameter at breast height (DBH), species, and live/dead
status. From DBH, total basal area was calculated (BAT). On a sub-
sample of trees, comprised of the largest and smallest tree of each
species in each plot quadrant, the Ht and CBH was measured, while
percentages of live, scorched, and charred tree crown were visually
estimated and recorded with 5% precision under the constraint that
they sum to 100% (Hudak et al., 2011a).

2.3. Tree attribute imputation

We applied k-Nearest Neighbor (k-NN) imputation, a nonparametric
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modeling technique, to infer missing values of the subsampled tree
attributes [Ht, CBH, and percentages of live, scorched and charred
crowns], using the yaImpute package (Crookston and Finley, 2008) in
the R statistical software (R Core Team, 2019). For this study, we used
Random Forest based k-NN (RF k-NN) imputation to infer the missing
tree attributes from predictor variables known for all trees tallied in the
field plots: tree DBH, species, study area (Secesh Meadows or Warm
Lake), site condition (treated or untreated), and site fire severity as
called on the ground for the site (low, moderate or high). The number
of neighbors was set to one (k = 1) to maintain the original variance in
the data (Hudak et al., 2008).

2.4. QuickBird imagery acquisition and pre-processing

QuickBird images were acquired immediately after the wildfire on
22 October (Secesh Meadows) and 27 October (Warm Lake) 2007 and
again on 18 August 2008 (Warm Lake) and on 16 July 2009 (Secesh
Meadows). The 2007 images capturing immediate fire effects and col-
lected only 5 days apart were considered for the main analysis of this
study, whereas the later images also considered are detailed in the
supplementary material. The four 2.4m multispectral bands were fused
with the 0.6 m panchromatic band into a 4-band product of 0.6m re-
solution delivered by the vendor (DigitalGlobe, Longmont, CO). Several
vegetation indices with potential sensitivity to fire effects were calcu-
lated from the 0.6 m fused 4-band QB imagery (Table 1).

2.5. Airborne laser scanning acquisition and pre-processing

Airborne Laser Scanning (ALS) data were collected over the two
study areas (Secesh Meadows and Warm Lake) one year after the
wildfire on 1–3 September 2008 (Table 2). The ALS vendor [Watershed
Sciences (now Quantum Spatial), Inc., Portland, OR] post-processed
and delivered the data as LAS files. Returns were classified using the

lasground function in LAStools (Isenburg, 2018), and a 1m resolution
digital terrain model (DTM) was interpolated from the ground returns
using the gridsurfacecreate function in FUSION software (McGaughey,
2018). The point clouds were height normalized by subtracting the
elevation of the DTM at each point, and the canopy height model
(CHM) was created from the normalized heights at 0.5m resolution.

2.6. Individual tree detection

Individual tree detection and crown metrics computation were
performed using the rLiDAR package (Silva et al., 2015,2016) in R (R
Core Team, 2019) in four steps. First, the 0.5m CHM was smoothed by
a 3×3mean filter to remove spurious local maxima caused by tree
branches. Second, individual trees were detected from the smoothed
CHM using a local maxima algorithm implemented in the Find-
TreesCHM function. The FindTreesCHM searched for treetops in the
CHM via a moving window with a fixed treetop window size (TWS). A
TWS of 5×5 was found to be most effective for individual tree de-
tection according to preliminary tests. Third, each individual tree
crown was delineated based on Voronoi tessellation (Aurenhammer,
1991) implemented in the ForestCAS function. The crown area (CAREA,
m2) was defined from the circle calculated as πr2, with the radius, r,
being half the diameter of the delineated tree crown.

2.7. QB- and ALS-derived crown metrics

The mean and standard deviation of each QB band and spectral
index (Table 1, Table S1) at crown level were calculated as candidate
variables for the predictive models. For crown metrics derived from ALS
data, all returns of the normalized heights within simplified crown
polygons were extracted and crown height metrics (e.g., maximum
height, mean height, etc., Table 3) were computed using the Crown-
Metrics function in rLiDAR (Silva et al., 2015,2016) for each tree

Fig. 1. Map of the study area in central Idaho, USA. Image source: ESRI (2011).
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detected. Based on vertical profiles of the heights within the crown
polygon, the normalmixEM function from the mixtools package
(Benaglia et al., 2009) in R was fitted to compute crown base height

(CBH, m) from lidar. Crown volume (CV, m3) and crown surface area
(CSA, m2) were calculated as the volume and surface area of 3D convex
hulls derived from all ALS returns within the crown segments (Table 3).
Also, intensity metrics were calculated as candidate variables for pre-
dictive modeling. As for the effects of the incidence angle on the in-
tensity, several studies have shown that for small angles (up to 15°), this
effect can be neglected (Coren and Sterzai, 2006; Kukko et al., 2008).
The variables described above were then used to predict the post-fire
tree attributes measured in the field [i.e., Ht and CBH] or calculated
from the field data [i.e., by multiplying BAT by the live, scorched, and
charred crown percentages to calculate weighted estimates of BAL, BAS,
BAC. Also, the live, scorched, and charred percentages were used to
classify individual tree crown severity into classes (Table 4).

2.8. Predictive modeling and assessment

Tree stems were not mapped in the field plots, but were sorted
beginning north of plot center and proceeding clockwise. Therefore,
tree lists tallied in the field or from tree-level ALS metrics were matched
based on their total tree height, in a process similar to imputation. First,
both the field and ALS individual tree lists for each plot were sorted by
total tree height and combined into a single table. Second, if the
number of ALS-detected trees was higher than in the field, extra trees
were randomly pulled from the ALS-detected tree list within the same
plot, or if the number of ALS-detected trees was lower than in the field,
trees were randomly added from the ALS-detected tree list within the
same plot. Thus, the same number of ALS-derived crown attributes were
obtained as trees tallied in the field. This ensured that there were no
missing values in the dataset to interfere with the subsequent modeling,
and that the tree tally reflected actual tree density on the ground, as this
greatly influences fire behavior and severity.

2.8.1. Variable selection and regression modeling
Model Improvement Ratio (MIR) (e.g. Evans and Cushman, 2009;

Evans et al., 2010; Evans, 2018; Silva et al., 2017) was applied to
identify the most important ALS and QB metrics for predicting Ht, CBH,
BAT, BAL, BAS, and BAC. To create parsimonious models, we reserved
only the metrics that exhibited MIRs ≥ 0.35. For modeling, we split the
data into training (75%, n= 660) and validation (25%, n=220) da-
tasets, and the attributes of interest (Ht, CBH, BAT, BAL, BAS, BAC, and
CS classes 1–4) were predicted at the tree level using the training da-
taset and again the Random Forest package (Breiman, 2001; Liaw and
Wiener, 2015) in R. As in the predictor variable selection procedure,
ntree was set to 1000 and mtry was set to 2.

Table 1
Spectral bands and indices from QuickBird imagery. The mean and standard deviation of each band or index were tested as candidate QB metrics at the tree crown
level (Table S1).

Spectral Index Abbreviation Wavelength/Equation Reference

Blue B 450-520 nm QuickBird imagery
Green G 520-600 nm
Red R 630-690 nm
Near-Infrared NIR 760-900 nm
Normalized Difference Vegetation Index NDVI −

+

NIR R
NIR R

(Tucker, 1979)

Enhanced Vegetation Index EVI −

+ + −

NIR R
NIR R B
2.5( )

(1 (6 7.5 ))
(Huete et al., 2002)

Soil Adjusted Vegetation Index SAVI +
−

+ +
L*(1 )NIR R

NIR R L
( )

With L=0.5

(Huete, 1988)

Modified Soil Adjusted Vegetation Index MSAVI2 + − + − −NIR NIR NIR R(2 1 (2 1)2 8( ))
2

(Qi et al., 1994)

Burned Area Index BAI
+ + +R NIR

1
(0.1 )2 (0.06 )

(Chuvieco 2002)

Red-Green Index RGI R
G

(Coops et al., 2006)

Blue-Red Index BRI B
R

(Hart and Veblen, 2015)

Simple Ratio Index SRI NIR
R

(Davranche et al., 2010)

Table 2
ALS collection parameters.

Parameter Values

Scanning angle (°) ± 14
Pulse rate (kHz) ≥4
Pulse footprint (cm) < 15
Operating altitude (m) 900
Average point density (points m−2) 5

Table 3
ALS-derived tree crown metrics (adapted from Silva et al., 2015).

Abbreviation Definition

HMAX (m) Maximum crown height
HMEAN (m) Mean crown height
HSD (m) Crown height standard deviation
HSKE Skewness of Heights
HKUR Kurtosis of Heights
HRANGE Hmax-Hmin

HQR Interquartile range (H75-H25)
H25TH (m) Crown height 25th percentile
H50TH (m) Crown height 50th percentile
H75TH (m) Crown height 75th percentile
H90TH (m) Crown height 90th percentile
H95TH (m) Crown height 95th percentile
H99TH (m) Crown height 99th percentile
CL (m) Crown length (HMAX – CBH)
CBH (m) Crown base height
CRATIO Crown ratio (CL/ HMAX)
CAREA (m2) Crown area (π*CRAD2)
CV (m3) Crown volume as the convex hull 3D
CSA (m2) Crown surface area as the convex hull 3D
CDENS (%) Crown Density (returns≥ CBH / total returns, as a percentage)
IMAX Maximum intensity
IMEAN Mean intensity
ISD Intensity standard deviation
ISKE Skewness of intensities
IKUR Kurtosis of intensities
IRANGE Imax-Imin

IQR interquartile range (I75-I25)
I25TH Intensity height 25th percentile
I50TH Intensity height 50th percentile
I75TH Intensity height 75th percentile
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For Random Forest regression, the accuracy of estimates for each
model was evaluated in terms of Adj.R2, absolute and relative Root
Mean Square Error (RMSE), and Bias based on the linear relationship
between predicted and observed values:

∑= −
=

RMSE m m y y n( , ) ( ˆ ) /
i

n
i i

2
1

2
(1)

∑= −
=

Bias m m
n

y y( , ) 1 ( ˆ )
i

n
i i

2
1 (2)

Where n is the number of observations, yi is the observed value for tree
properties i, and ŷi is the predicted value for tree properties i. Moreover,
relative RMSE (%) and Bias (%) were calculated by dividing the abso-
lute values (Eqs. 1 and 2) by the mean of the observed values.

The Adj.R2, absolute and relative RMSE and Bias statistics were
computed based on the linear relationship between predicted and ob-
served variables using the validation dataset withheld from training.
We used the two-sided Wilcoxon–Mann–Whitney rank-sum (W)
(Hollander and Wolfe, 1973; Bauer, 1972) in R to assess if the mean of
predicted and the observed crown attributes (i.e., Ht, CBH, BAT, BAL,
BAS and BAC) differed at a significance level of 5%.

2.8.2. Classification modeling and assessment
We ran Random Forest in classification mode to predict the cate-

gorical response variable of CS class. To assess the accuracy and pre-
cision of the CS classification models, Cohen’s Kappa coefficient, and
accuracy, sensitivity, and specificity values were calculated. Cohen’s
Kappa coefficient (Table 5) classifies the model according to the level of
agreement and the percentage of data that are reliable.

Classification accuracy shows how often the classifier is correct by
equation (TP+TN)/total, where TP is true positive (cases in which
“yes” was predicted, and it was true) and TN is true negative (cases in
which “no” was predicted and it was true). Sensitivity is defined as the
proportion of positive results out of the number of samples which were
actually positive. Specificity is defined as the proportion of negative
results out of the number of samples which were actually negative.

3. Results

3.1. Evaluation of fuel treatment effectiveness

Field measurements affirmed that the treated sites had fewer trees
per hectare (number) than the untreated sites (number). On sites clas-
sified as high severity, untreated plots were dominated by charred trees
both in total number and percent of trees, while treated plots had

similar abundance in trees with scorched crowns and charred crowns.
Although the moderate severity class in treated stands were dominated
by trees with scorched needles, there were a few trees of mixed crown
severity, in contrast very few trees had a mixed crown severity in the
untreated stands. The low severity class in untreated stands was
dominated by live trees versus in treated stands, where there tended to
be a diversity of crown damage (Fig. 2).

3.2. Imputation of tree attributes

Individual tree Ht was imputed with comparable precision between
treated and untreated sites, although accuracy was higher at treated
sites (Table 6). While CBH was imputed with clearly higher precision
and accuracy at treated sites than untreated sites (Table 6), percent live
and charred crowns were more precisely and accurately imputed at
untreated sites than treated sites. But, in general, percent scorched
crown was imputed with less precision but more accuracy whether or
not the site was treated (Table 6).

3.3. Individual Tree Detection using ALS data

Individual tree detection performed highly better in treated plots
with open canopy structure than untreated plots with typically closed
canopies. Even though the untreated plots had higher tree density than
treated plots, when considering two untreated plots as outliers, the
comparison of observed and detected tree density resulted in an in-
creased R2 of 0.41 (Fig. 3).

3.4. Crown metrics and variable selection

A total of 15 of the 30 candidate ALS metrics (HMAX, HMEAN, HSD,
HKUR, HQR, HRANGE, H25TH, IMEAN, ISD, IQR, I25TH, CDENS, CL, CBH,
CRATIO), and 6 of the 24 candidate QB metrics (NDVIMEAN, NDVISD,
EVIMEAN, BAIMEAN, RGIMEAN, REDMEAN) were not highly correlated (i.e.,
r< 0.9) with at least one other metric within each sensor type group,
and therefore were considered further in the MIR analyses. When
comparing ALS to QB metrics, the correlations were weak. For instance,
NDVIMEAN produced weak and positive correlations with the intensity
metrics from ALS, as did I25TH, ISD, IMEAN, and IQR (Fig. 4).

3.5. Random forest modeling and assessment

3.5.1. Regression model
Random Forest models explained 12%–66% of variation in pre-

dicting Ht, based on the full dataset (Table 8). However, the models
based on the training dataset (75%) performed differently between
treated and untreated plots (Figs. 5–7), when assessed with the with-
held data (25%). The HMAX and HMEAN metrics were important pre-
dictors of Ht in the ALS and ALS+QB models, six indices (BAIMEAN,
EVIMEAN, NDVIMEAN, NDVISD, REDMEAN, RGIMEAN) were important
predictors in the QB model (Table 7). HMAX exhibited the highest MIR in
Ht models using ALS metrics or ALS+QB metrics, while the red band
exhibited the highest MIR in the Ht model using only QB metrics
(Table 7). ALS intensity metrics were not important predictors of Ht in
ALS or ALS+QB models. QB metrics were not important as ex-
planatory variables of Ht in ALS+QB models (Table 8).

Table 4
Tree-level crown severity (CS) classification, adapted from Jain and Graham (2007).

Fire Severity Class Classification Description

CS-1 (live) 81% to 100% green Entire crown comprised of live needles (no sign of fire).
CS-2 (mixed) 45% to 80% green Crown dominated by live needles but with the presence of scorched needles and/or charred crowns (charred branches with all

needles consumed by the fire).
CS-3 (scorched) 56% to 100% brown Crown dominated by scorched needles but with the presence of some live or charred branches.
CS-4 (charred) 55% to 100% black Crown dominated by charred branches with only a trace of scorched needles.

Table 5
Description of Cohen’s Kappa coefficient used to assess the (CS) classification.

Value of Kappa Level of agreement % of data that are reliable

< 0 None 0–4
0.01–0.20 Minimal 4–15
0.21–0.40 Weak 15–35
0.41–0.60 Moderate 36–63
0.61–0.80 Strong 64–81
0.81–0.99 Almost perfect 82–100

Adapted from: Viera and Garrett (2005).
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The accuracy of CBH prediction when higher at the open-canopy
treated plots than at the closed-canopy untreated plots (Figs. 5–7), with
explained variation in CBH ranging from 5% to 25% (Table 8). ALS-
derived height and intensity metrics were important in predicting CBH
(Tables 7 and 8), while NDVIMEAN and EVIMEAN were also important
predictors of CBH in the QB model. When ALS and QB derived metrics
were combined, the percent variance explained in CBH models in-
creased from 5% to 24%, but none of QB-derived metrics were retained
in the model (Table 7 and 8).

The most important predictor metrics to explain the variation in BAT

from ALS and ALS+QB models were height metrics, such as HMAX
and HMEAN (Tables 7 and 8). BAIMEAN and RED were the most im-
portant predictors of BAT in the QB model, but the ALS and ALS+QB
models performed better in untreated plots, whereas the QB model

performed better in treated plots (Figs. 5–7).
Random Forest models predicting BAL, BAS, and BAC from QB

metrics alone were poor, and QB metrics did little to improve ALS+QB
models. The selected predictors were similar for all the BA models
weighted by crown color classes, where in general ALS intensity metrics
were more important than QB metrics (Table 7). BAS is predicted more
poorly than BAL or BAC (Table 8). BAL and BAC models performed better
in untreated plots than treated plots (Table 8)..

Height and intensity metrics consistently exhibited high MIRs in all
models (ALS, QB and ALS+QB models) and all study plots (treated and
untreated). In the QB models, BAI, EVI, NDVI, and RED were better
predictors of crown severity expressed in terms of weighted basal area
(BAL, BAS, and BAC) or as a class (CS 1–4) (Table 7). However, all
models fitted to explain BAL, BAS, and BAC had a RMSE higher than
100%. The QB metrics did not improve the predictive models when
included with ALS metrics (Table 8).

We developed additional Random Forest models for the two study
areas to further investigate the potential of QB imagery collected either
one or two years post fire (2008 and 2009) at Warm Lake and Secesh
Meadows, respectively (see Supplementary Material - Tables S2 and
S4). In the case of Warm Lake, the 2008 QB image was a better tem-
poral match to the 2008 ALS and field data collection, thus providing a
fairer comparison between the two sensor types (Table S2). On the
other hand, for Secesh Meadows, 2009 QB model accuracies were re-
latively poorer, which matched expectations given the one-year dif-
ference with the ALS and field measures collected in 2008, one-year
post fire (Table S4).

3.5.2. Crown Severity (CS) classification model
Moderate (ALS and ALS+QB) to weak (QB) classification ac-

curacies were observed to model CS classes 1 to 4, based on the full
dataset. As expected, noticeably higher accuracies were observed when
using QB from 2008, the same year that the field and ALS data were
collected (Table S3). Similarly to using QB from 2007 (Table 9), we

Fig. 2. Multiple bar plots of number of trees
(upper) and percent of trees (bottom) in treated
and untreated sites by low, moderate and high
fire severity and crown severity (CS) classes
(1–4). Crown severity classes are defined in
Table 4. Fire severity is defined as low when
live crowns predominate, as moderate when
scorched crowns predominate, and as high
when charred crowns predominate.

Table 6
Statistical summary of the imputed tree structural attributes.

Attributes Treatment Adj. R2 RMSE Bias

Absolute Relative Absolute Relative

Ht (m) All dataset 0.41 3.58 21.61 0.26 1.59
Treated 0.37 3.62 21.55 0.15 0.91
Untreated 0.44 3.71 22.70 0.35 2.16

CBH (m) All dataset 0.11 4.88 59.91 0.16 2.02
Treated 0.34 3.89 49.03 0.13 1.58
Untreated 0.01 5.44 65.12 0.28 3.39

Live crown (%) All dataset 0.35 32.55 172.40 −0.85 −4.50
Treated 0.16 38.66 205.19 −1.74 −9.25
Untreated 0.52 27.75 146.66 0.84 4.42

Scorched crown
(%)

All dataset 0.25 42.13 103.17 0.58 1.42
Treated 0.11 48.47 80.93 0.47 0.79
Untreated 0.10 37.12 184.18 −0.19 −0.96

Charred crown
(%)

All dataset 0.52 33.57 83.34 0.27 0.66
Treated 0.26 35.98 169.26 1.26 5.96
Untreated 0.56 31.19 51.20 −0.64 −1.05

Note: Ht: total height, CBH: crown base height.
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observed weaker classification accuracy when using QB from 2009
(Table S5). In general, classification model accuracies were better in
untreated than treated areas (Table 9). Finally, CS-4 and CS-3 produced
higher sensitivity values while CS-1 and CS-2 produced the higher

specificity values within the Random Forest classification models
(Fig. 8).

Fig. 3. Individual tree detection from ALS data. a) Number of trees detected by ALS in relation to number of trees observed; b1 and b2) ALS 3D point cloud of
example plot colored by height, in a single treated/untreated example plot pair; c1 and c2) ALS 3D individual trees detected in the same example plot pair.

Fig. 4. Pearson correlations among ALS and QB
metrics with a maximum allowable correlation
of 0.9 for inclusion in the model improvement
ratio (MIR) analysis. Positive correlations
(r> 0) are displayed in blue and negative cor-
relations (r< 0) in red. Strength of correlation
is indicated by both the size of the circle and the
color intensity as defined by the color ramp at
the bottom. From the subset of 21metrics in-
cluded in the MIR analysis (Fig. 4), the most
important explanatory variables for predicting
the tree attributes and crown severity classes
with Random Forest were selected based on
higher values (MIR≥ 0.35) (Table 7) (For in-
terpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article).
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4. Discussion

Post-fire assessment is an essential activity for developing a man-
agement plan. Remote sensing adds value to field assessments as a way
to expand information on damage level and its distribution over larger
burned areas than can be practically surveyed in the field. However,
most prior studies are not precisely characterizing fire effects because
they only consider the three broad post-fire severity classes of low,
moderate or high fire severity at the plot or stand level at a moderate
spatial resolution of 30m (e.g., Hudak et al., 2011b). Our study pre-
sents a novel approach for mapping post-fire charred, scorched, and live
crowns at the tree level and may be the first to test both ALS and QB
imagery at the tree level.

Spatial heterogeneity in fire severities of variable patch size mixed
with unburned canopies are characteristic of large wildfires
(Christensen, 1993; Turner et al., 1994; Broncano and Retana, 2004),
the vast majority of which are much smaller than the East Zone and

Cascade Complex mega-fires that impacted our local study areas
(Hudak et al., 2011a). The methodology presented herein based on ALS
and QB data for individual tree detection, crown structure, and crown
fire severity characterization in post-fire sites provides an alternative to
the traditional area-based approach using moderate resolution Landsat
satellite data. More resolute predictions of crown attributes (e.g., basal
area, height, crown fire severity) can be aggregated into larger grid cells
across the landscape for use in habitat models (Casas et al., 2016),
whereas area-based predictions, if rescaled, may bias the habitat
models (Garabedian et al., 2014). Moreover, burned severity patches
are not homogeneously comprised of only low, moderate or high burn
severity, but represent a mixture.

Individual tree approach may also minimize aggregation errors and
allow land managers to more accurately identify severely burned areas
(Montealegre et al., 2014). However, as fire severity increases, canopy
fragmentation may occur, increasing the number of tree clumps
(Montealegre et al., 2014) and making tree detection more difficult.

Fig. 5. Equivalence plots of the observed and the mean of predicted Ht (m) (a), CBH (m) (b), BAT (m2) (c), BAL (m2) (d), BAS (m2) (e), and BAC (m2) (f), obtained
from the 500 bootstrapped Random Forest model runs using Airborne Laser Scanning (ALS) variables.
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Also, noise may be introduced into the tree detection by broken or
partially consumed snags (Casas et al., 2016).

Immediately following high severity burns, overstory canopy is
largely removed, but considerable overstory canopy remains after
moderate or low severity burns (Lentile et al., 2006). By design, pre-fire
fuel treatments dramatically reduce the tree density, creating open
canopy conditions from what was previously closed canopy. Not sur-
prisingly, we found better detection of individual trees in treated sites
due to low canopy cover. In closed canopy conditions without a prior
pre-fire treatment, individual tree detection was more difficult because
of overlapping tree crowns of variable sizes, both live and dead (Wing
et al., 2015). Previous studies also found higher tree detection accuracy
in open canopy conditions (Casas et al., 2016; Falkowski et al., 2008;
Silva et al., 2016). In two untreated plots that were the strongest out-
liers (i.e., highest numbers of trees detected, seen in close proximity in
Fig. 3a), about three times as many trees were found from the ALS data
as were tallied in the field. High fire severity occurred at these plots,

resulting in charred tree tops devoid of needles that offered very little
surface area from which to reflect returns. We speculate that false de-
tections may have been caused by larger branches than would be de-
tected in an unburned, dense, closed canopy stand that still retained its
needles, especially considering the lidar point density of 5 points m−2

was quite sparse by current standards. Additionally, leaning trees (i.e.,
trees bent at an angle ≥45° due to snow or other agents) probably
contributed to false detections (Wing et al., 2015).

The main advantage of using r and MIR statistics for selecting the
most important ALS and QB metrics was to achieve parsimonious
models (Silva et al., 2017, 2017b). In this way, highly correlated me-
trics were removed, and the most important metrics were clearly
identified. Herein, the chosen ALS height-related metrics (HMAX, HMEAN,
HSD, HRANGE and H25TH) were informative for characterizing forest
structure attributes, such as Ht, CBH and BA. A notable result was that
the chosen ALS intensity metrics, despite not having been normalized,
were more informative for crown severity characterization (see Table 7)

Fig. 6. Scatterplots of the observed and the mean of predicted Ht (m) (a), CBH (m) (b), BAT (m2) (c), BAL (m2) (d), BAS (m2) (e), and BAC (f), obtained from the 500
bootstrapped Random Forest model runs using QuickBird (QB) variables.
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than the QB metrics. These intensity metrics include IMEAN, ISD, IQR and
I25TH. The contribution of ALS intensity metrics to describe forest
structure and distinguish fire severity classes found in this study agrees
with other studies (e.g. Kim et al., 2009; Lim et al., 2003; Casas et al.,
2016).

Random Forest regression and classification models produced better
predictions of Ht, CBH, BATL, BAL, BAS, BAC, and CS classes on un-
treated sites than treated sites. Also, in treated sites, the residual trees
were more broadly and evenly spaced, whereas broken or partially
consumed snags were common in untreated sites (Casas et al., 2016).

It is important to note that our study area had both treated and
untreated sites that captured a broader fire severity gradient than
would have either treatment condition alone. We observed differences
in accuracy between ALS and QB models, both in treated and untreated
areas. For instance, the prediction of Ht and CBH relied primarily on
height-related metrics, mainly the HMAX and HMEAN, respectively. Other
studies have attempted to predict CBH (Scott and Reinhardt, 2001)

because it is one of the most important forest structure attributes used
in crown fire behavior models (Rothermel and Rinehart, 1983) and it is
associated with tree fire severity. Because tree crown characteristics
varied so dramatically due to their fire severity condition, CBH pre-
dicted in our study had a larger RMSE than previous studies. For in-
stance, Vauhkonen (2010) using ALS data estimated CBH with a RMSE
varying between 1.54–3.88m, while Jung et al. (2011) had a lower
RMSE of 1.87. In both studies, the study areas were unburned forests,
whereas our case study area had both treatment and wildfire effects
contributing to the variation.

Other studies have shown that BAT, as well as live BA and dead BA
(Bright et al., 2013, 2014), may be reasonably predicted from height-
related metrics. Hudak et al. (2006) estimated BAT of an actively
managed mixed forest in Idaho, USA using ALS and Advanced Land
Imager (ALI) multispectral satellite data. They also explained more
variance (ranging from R2=0.71 to R2=0.89) using ALS data alone or
in combination with ALI spectral indices than using ALI metrics alone.

Fig. 7. Scatterplots of the observed and the mean of predicted Ht (m) (a), CBH (m) (b), BAT (m2) (c), BAL (m2) (d), BAS (m2) (e), and BAC (m2) (f), obtained from the
500 bootstrapped Random Forest model runs using Airborne Laser Scanning+Quickbird (ALS+QB) variables.
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Table 7
Airborne Laser Scanning (ALS) and QuickBird (QB) metrics selected as important for predicting the response variables, according to the model improvement ratio
(MIR) value (MIR≥ 0.35).

Explanatory Variables Response Variables

Ht (m) CBH (m) BAT (m2) BAL (m2) BAS (m2) BAC (m2) Crown Fire Severity Classes

ALS HMAX 1.00 1.00 1.00 1.00 0.49 1.00 0.39
HMEAN 0.35 0.85 0.65 0.65 0.39 0.42 0.56
HSD 0.37 0.87 0.68
HQR

HRANGE 0.85 0.73 0.93
H25TH 0.49 0.44 0.37
HKUR

CL 0.36 0.40
CBH 0.55 0.35 0.38 0.44
CRATIO

CDENS

ISD 0.44 0.48 1.00 0.39 0.56
IMEAN 0.50 0.65 0.57 0.65 0.96
IQR 0.50 0.89 0.44 0.38 0.99
I25TH 0.45 0.42 0.70 0.96

QB NDVIMEAN 0.71 1.00 0.47 1.00 0.61 0.79 1.00
NDVISD 0.59 0.66 0.41 0.36 0.43 0.68
EVIMEAN 0.67 0.95 0.39 0.86 0.59 0.61 0.89
BAIMEAN 0.96 0.94 0.99 0.62 1.00 0.89 0.56
RGIMEAN 0.86 0.75 0.50 0.54 0.43 0.70 0.57
REDMEAN 1.00 0.94 0.98 0.69 0.83 1.00 0.57

ALS+QB HMAX 1.00 1.00 1.00 0.87 0.40 1.00 0.39
HMEAN 0.35 0.85 0.64 0.44 0.37
HSD 0.72
HQR

HRANGE 0.62 0.92 0.50
H25TH 0.46
HKUR

CL 0.36
CBH 0.50
CRATIO

CDENS

ISD 0.37 0.96 0.50
IMEAN 0.45 0.52 0.53 0.69
IQR 0.44 0.46 0.42 0.68
I25TH 0.43 0.58 0.59
NDVIMEAN 1.00 0.50 1.00
NDVISD 0.44
EVIMEAN 0.48 0.68
BAIMEAN 0.39
RGIMEAN

REDMEAN 0.36

Note: MIR values range from 0 to 1, where 1 indicates most important.

Table 8
Accuracies of Random Forest (RF) models in terms of Adj.R2, Root Mean Square Error (RMSE) and Bias calculated by the relationship between predicted and observed
tree structural attributes. ALS: Airborne Laser Scanning (2008), QB: QuickBird imagery (2007).

Attributes Crown Metrics Adj. R2 RMSE Bias

Absolute Relative Absolute Relative

ALS Ht HMAX, HMEAN 0.66 2.38 14.47 −2.50× 10-2 0.15
CBH CBH, H25TH, HMAX, HMEAN, HSD, I25TH, IQR, IMAX, IMEAN 0.25 3.58 43.07 2.43×10−2 0.29
BAT CBH, CL, HMAX, HMEAN 0.55 1.86× 10−2 50.31 −2.70× 10-4 −0.75
BAL CBH, HMAX, HMEAN, HRANGE, I25TH, IQR, ISD, IMEAN 0.46 1.21× 10−2 155.89 1.21×10−4 1.56
BAS CBH, H25TH, HMAX, HMEAN, HRANGE, HSD, IQR, ISD, IMEAN 0.06 1.80× 10−2 134.60 2.82×10−4 2.07
BAC CL, HMAX, HMEAN, I25TH, IQR, ISD, IMEAN 0.63 1.69× 10−2 107.03 1.48×10−4 0.94

QB Ht BAIMEAN, EVIMEAN, NDVIMEAN, NDVISD, REDMEAN, RGIMEAN 0.12 4.00 23.90 −0.29 −1.75
CBH BAIMEAN, EVIMEAN, NDVIMEAN, NDVISD, REDMEAN, RGIMEAN 0.05 4.08 49.20 3.00×10−2 0.36
BAT BAIMEAN, EVIMEAN, NDVIMEAN, REDMEAN, RGIMEAN 0.03 2.80× 10−2 76.50 6.20×10−4 1.68
BAL BAIMEAN, EVIMEAN, NDVIMEAN, NDVISD, REDMEAN, RGIMEAN 0.30 1.40× 10−2 178.00 9.70×10−5 1.25
BAS BAIMEAN, EVIMEAN, NDVIMEAN, NDVISD, REDMEAN, RGIMEAN 0.03 1.80× 10−2 138.00 3.80×10−4 2.82
BAC BAIMEAN, EVIMEAN, NDVIMEAN, NDVISD, REDMEAN, RGIMEAN 0.24 2.40× 10−2 152.00 6.70×10−4 4.24

ALS+QB Ht HMAX, HMEAN 0.66 2.39 14.52 −1.99× 10-2 −0.12
CBH CBH, H25TH, HMAX, HMEAN, I25TH, IQR, IMEAN, ISD 0.24 3.61 43.49 2.45×10−2 0.30
BAT HMAX, HMEAN 0.52 1.95× 10−2 52.57 −1.43× 10-4 −0.39
BAL HMEAN, HMAX, HMEAN, HRANGE, IQR, EVIMEAN, NDVIMEAN 0.49 0.01 151.14 1.22×10−4 1.57
BAS HMAX, HRANGE, HSD, IQR, IMEAN, ISD, BAIMEAN, REDMEAN, NDVIMEAN 0.12 1.76× 10−2 129.43 3.34×10−4 2.45
BAC CL, HMAX, HMEAN, I25TH, IMEAN 0.62 0.02 107.26 1.12×10−4 0.71
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Table 9
Accuracies of Random Forest (RF) models – to classify crown severity (CS – 1–4) in terms of Accuracy and Kappa attributes calculated by the relationship between
predicted and observed attributes.

N Condition Crown Metrics Kappa Accuracy (%)

ALS All dataset H25TH, HMAX, HMEAN, HRANGE, I25TH, IQR, ISD, IMEAN 0.456 65.76
Treated CBH, CDENS, HMAX, HRANGE, HSD, I25TH, IMEAN, ISD 0.280 60.79
Untreated H25TH, HMEAN, HRANGE, I25TH, IQR, IMEAN, ISD 0.539 74.55

QB All dataset BAIMEAN, EVIMEAN, NDVIMEAN, NDVISD, REDMEAN, RGIMEAN 0.393 61.24
Treated BAIMEAN, EVIMEAN, NDVIMEAN, NDVISD, REDMEAN, RGIMEAN 0.283 60.79
Untreated e EVIMEAN, NDVIMEAN, RGIMEAN 0.474 70.18

ALS+QB All dataset EVIMEAN, HKUR, HMAX, HRANGE, I25TH, IQR, ISD, IMEAN, NDVIMEAN, NDVISD 0.463 65.91
Treated CBH, CDENS, HMAX, HRANGE, HSD, I25TH, IMEAN, ISD, BAIMEAN, EVIMEAN, NDVIMEAN, NDVISD, REDMEAN, RGIMEAN 0.379 66.91
Untreated HRANGE, I25TH, IQR, IMEAN, ISD, EVIMEAN, NDVIMEAN, NDVISD 0.542 74.56

Fig. 8. Sensitivity (%) (left) and specificity (%) (right) from the Random Forest (RF) classification models for crown severity (CS) classes 1–4 (see Table 1 for
definitions).
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In this study, vegetation index derived from QB-derived suite of
metrics (e.g. NDVIMEAN, BAIMEAN and REDMEAN) produced the highest
MIR for predicting basal area weighted by crown severity (live, scor-
ched and charred) and the CS classes. NDVI is a useful indicator of
photosynthetic capacity (Willis, 2015) but also is affected by understory
and soil properties that contribute to background reflectance (Escuin
et al., 2008), which varies greatly between burn severity classes. A
reasonable and significant correlation between NDVI and fire severity
was found by Diaz-Delgado et al. (2003). On the other hand, Oliveras
et al. (2009) and Hammill and Bradstock (2006) found low corre-
spondence between NDVI and percentage of charred or live canopies.

While height-related metrics from ALS may be most useful for
predicting and mapping forest structural attributes (e.g., Ht, CBH, and
BAT), increased availability of high resolution imagery and/or ALS in-
tensity metrics are improving post-fire CS classification (Kim et al.,
2009). Intensity and spectral information about post-fire disturbance
were the most important predictors for all the response variables re-
lated to crown condition (live, scorched, and charred) in this study (see
Table 7). We can highlight all selected intensity metrics and the QB
indices derived from the red and NIR bands (NDVI, EVI, BAI, and RED),
which had relatively higher importance in the predicted models. ALS
intensity metrics alone were selected to predict BAL and BAC and CS
classes (Tables 7–9). This may be attributable to higher near-infrared
return intensity reflected from green rather than non-photosynthetic
vegetation components. Moreover, ALS intensity can be used to esti-
mate and distinguish between live and dead biomass (Kim et al., 2009),
which our results support (Fig. S1).

When both ALS and QB metrics were combined, NDVIMEAN was the
most important explanatory variable to predict BAL. The same was not
observed for predicting BAC where none of the QB-derived indices was
important. Using only ALS data, HMAX was the most important ex-
planatory variable for both BAL and BAC, as well as BAT. A second ex-
planatory variable for predicting BAL and BAC according to MIR was IQR
and I25TH, respectively. Higher ALS intensities are associated with green
foliage, while lower ALS intensities are associated with black vegetation
(Fig. S1). Kim et al. (2009) used ALS data to distinguish between live
and dead standing tree biomass in Grand Canyon National Park, USA,
and Bright et al. (2013) considered ALS intensity metrics to predict both
live and dead BA in western coniferous forests impacted by bark bee-
tles. These studies associated low intensity returns with dead biomass,
finding that the low intensity ALS returns were sensitive to the pro-
portion of echoes from non-photosynthetic woody material, including
dead trees.

The accuracy of BAS models was improved 12% when ALS and QB
metrics were combined (Table 8). The brown color of dead or dying
needles may be associated with pests and diseases, as well as needles
scorched by fire. Coops et al. (2006) used QB imagery to detect red
attack damage due to mountain pine beetle infestation, and they found
RGI to be a good index to discriminate red attack crowns from non-
attack. Unlike Coops et al. (2006), among the QB metrics in our study,
BAI, NDVI and RED were selected as having higher importance than
RGI to predict BAS. More generally, however, ALS metrics were more
important than QB metrics as explanatory variables to predict BAS. Part
of the issue is that as the post-fire scene changes, so will its reflectance
properties. Scorched needles falling from the trees in the days, weeks,
and months following a fire would explain our generally poorer ability
to predict BAS compared to BAL and BAC (Table 8), and crown severity
class 3 compared to crown severity classes 1, 2, or 4 (Table 9).

Random Forest models for classifying CS produced satisfactory ac-
curacy. ALS intensity metrics were important to predict CS class in the
absence of QB metrics. The 2-year post-fire QB at Secesh Meadows di-
minished the utility of QB data for postfire tree crown assessment
(Tables S3–S4), relative to the 1-year post-fire QB at Warm Lake (Tables
S1–S2). The post-fire scene changes quickly during the first post-fire
year, and then the rate of change as site recovery slows over time (Lewis
et al., 2017). Among the ALS intensity metrics, IQR, HRANGE and I25TH

where the most important to predict BAL, BAS, BAC, respectively.
Complex associations between wildfire effects and fuel conditions can
cause, for instance, mixed live and charred crowns, while scorched
crowns necessarily fall within the gradient from unburned or low to
high severity conditions (Jain and Graham, 2007). Few studies have
attempted to map crown severity class at fine-scales in a post-fire forest
using field or remote sensing (e.g. Jain and Graham, 2007); and most
existing studies using either ALS or QB are focused on snag detection
(e.g. Jain and Graham, 2007; Casas et al., 2016; Vogeler et al., 2016)
instead of crown condition.

Fuel treatments produced a diverse set of tree severity outcomes
compared to the untreated stands. It is not surprising that the treated
sites tended to have more scorched trees crowns compared to the un-
treated sites (Fig. 2). However, there were fewer fully consumed crowns
(charred crowns) in the treated sites (approximately 60% compared to
the untreated stands that contained close to 100% of some trees totally
charred); thus, the treatments did diminish the amount of crown fire.
Graham et al. (2009) noted that in the Warm Lake Wildfire Complex
there were multiple head fires that burned into and around the treated
sites.

5. Conclusion

In this study, we used tree measurements collected in 40 field plots
to characterize fire effects on individual tree crowns and then sum-
marized at the plot level. Our study shows the greater utility of ALS
data compared to high resolution QB imagery for estimating post-fire
scorched and charred tree crowns, basal area, tree height and crown
base height in a mixed conifer forest from one-year post-fire ALS and
either immediate, one-year or two-year post-fire multispectral QB
images of high resolution. ALS-derived models performed better than
QB imagery for characterizing both tree structure attributes and crown
severity, but the combination of ALS and QB derived metrics slightly
improved the accuracy of only a few models. We hope that the pro-
mising results for characterizing post-fire crown attributes in this study
will stimulate further research and applications worldwide. Future re-
search and development could attempt to automate and apply such
models across broader spatial extents to generate stem maps across
burned landscapes to greatly assist forest managers in the preparation
of conservation and restoration plans after wildfires, and for wildlife
habitat assessments and other post-fire applications.
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