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INTRODUCTION

The 2019 Museum Fire burned ∼8 km2 of ponderosa pine and mixed-conifer forests in
mountainous terrain∼2 km north of Flagstaff, Arizona, USA (Figure 1). The fire ignited on Sunday
July 21, 2019 and became the highest priority fire in the nation due to the steep terrain and
proximity to Flagstaff, northern Arizona’s population center. The region has been in the Early 21st
century drought since the mid-1990’s (Hereford, 2007). This fire represents a common wildfire
event that is becoming more likely in the western US due to climate change, a longer fire season
and larger, more severe fires (Westerling, 2016; Singleton et al., 2019; Mueller et al., 2020), and
increased forest density linked to the history of fire suppression (North et al., 2015; Parks et al.,
2015; O’Donnell et al., 2018).While the immediate threats posed by wildfire are substantial, another
concern is often the post-wildfire debris flows caused by the removal of vegetation and ground
cover, and creation of water repellent soil conditions following fire (e.g., Neary et al., 2012).

Following theMuseum Fire, a small network of seismometers was deployed during the summers
and falls of 2019 and 2020. The purpose of this network was to record seismic signals associated with
debris flows that occurred within and downstream of the burn area. Here we present seismic data
recorded by this network and additional rainfall and photographic data. When combined, these
data provide a tool for examining post-wildfire debris flows in the southwestern US.

Advances in seismic instrumentation and processing techniques have led to a recent expansion
in the use of seismic analysis for non-traditional applications. This includes using seismic data
to study geomorphic processes such as sediment transport in rivers and mass wasting events
(Suriñach Cornet et al., 2005; Burtin et al., 2008, 2011, 2013; Schmandt et al., 2013; Roth et al.,
2016; Bessason et al., 2017; Allstadt et al., 2019; Coviello et al., 2019). As debris flows propagate
downslope, seismic energy is primarily generated by very coarse grains colliding with the bed of the
channel, with greater seismic energy produced in bedrock channels than channels dominated by
unconsolidated bed sediments (Tsai et al., 2012; Kean et al., 2015; Lai et al., 2018). Depending on the
instrumentation used, channel type, and debris-flow characteristics, previous data were interpreted
to show that these events may be identified and characterized at distances up to ∼3 km by seismic
stations (Lai et al., 2018), though detection and characterization is more likely at the scale of 10–
100 s of meters (Coviello et al., 2019). By combining seismic observation from multiple seismic
stations, debris flows can be located as they move, allowing seismic recordings to be tied to specific
events (Burtin et al., 2009; McGuire, 2018; Michel et al., 2019; and Tang et al., 2019). The datasets
presented here were specifically designed to monitor debris flows and build on the growing body of
work demonstrating the efficacy of using seismometers to monitor and characterize debris flows.
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FIGURE 1 | Hillslope map of the study area showing the burn area and the location of seismic stations, monitoring cameras, stream gauges, and rain gauges. Labels

are provided for site where data are shown in Figure 2. Red circle denotes the area where debris flows initiated during the July 24, 2020 event. Inset show burn

severity map modified from Museum Fire BAER Team (2019).

In northern Arizona, precipitation is concentrated in the
winter as snowfall and late summer months as high-intensity
monsoonal rain storms (July–September) (Jurwitz, 1953). These
high-intensity monsoonal storms have a high probability to
produce flooding and debris flows when they occur within
recently burned areas in steep terrain. The Museum Fire was
almost entirely confined to the steep, upper portions of the∼12.5
km2 Spruce Avenue Wash Watershed (SAWW), which flows
into neighborhoods and businesses in east Flagstaff (Figure 1).

Although the Museum Fire was primarily constrained to
the SAWW, a small portion of the fire burned into the
adjacent Schultz Creek Watershed and Burris Watershed.
Alluvial chronology using C14 determined that sediments in
the Schultz Creek Watershed have been accumulating for
approximately 7,000 years without major fires or flooding
(Stempniewicz, 2014), suggesting ample sediment availability
for debris flow entrainment. It is likely that the adjacent
SAWW has similar sediment availability, increasing the risk
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for destructive post-wildfire debris flows. Due to the direct
impact flooding and debris flows could have on the community,
flood models under three rainfall conditions (25, 51, and
76mm of rainfall) over the SAWW using FLO-2D software
(FLO-2D Software Inc., Nutrioso, Arizona) were produced (JE
Fuller Hydrology and Geomorphology, JEF Inc., Flagstaff, AZ).
The models show that under all three rainfall conditions,
the burned watershed is highly responsive and is likely to
produce flooding, with water depths approaching 1.5m under the
most severe modeled conditions (https://www.coconino.az.gov/
2133/Museum-Fire-Flood-Area; JEF model results are available
upon request). Consequently, the greatly increased watershed
sensitivity has increased probability for debris flows (Museum
Fire BAER Team, 2019).

The U.S. Geological Survey (USGS) post-wildfire debris-flow
model predicts debris flow probability at the basin or channel-
segment scale within a burned basin (Staley et al., 2016, 2017),
and the potential sediment volumes (Gartner et al., 2014). Post-
wildfire debris flow hazard for the SAWWwas rated as moderate
by the USGS, who predicted a potential debris flow volume
of 10,000–100,000 m3 for a 15 min rainstorm with a peak
intensity of 24 mm/h (Kean et al., 2019). A key variable in
the debris-flow probability model is the proportion of upslope
area burned at moderate to high soil burn severity on slopes
≥23◦ (Staley et al., 2016, 2017). Sixteen percent of the Museum
Fire burn scar burned at moderate to high soil burn severity
on slopes ≥23◦ (Figure 1; Supplementary Figure 1). Due to
increased post-wildfire debris flow probability, seismometers
were deployed within the burn area early August 2019 as soon as
it was deemed safe to enter the burn area, and kept in place until
November 2019. Monsoon season 2019 was the driest on record
for Flagstaff at the time with the city only receiving 52.83mm of
rain (National Weather Service, 2019). Due dry monsoon season,
only two significant rainfall events occurred within the burn area
during the 2019 season while stations were operating. At least
one earlier debris flow occurred during the fire, too soon to
allow us to enter and install instrumentation in the burned area.
The lack of debris flows and high-intensity rainfall during the
2019 season left significant volumes of unconsolidated sediment
stored within the burned drainages (e.g., Nyman et al., 2020).
Given the high likelihood of detecting additional debris flows,
thirteen seismometers were deployed within the same area in
June and July 2020 and were kept in place until October 2020.
The 2020 monsoon season was the driest on record, overtaking
the previous year with only 45.21mm of rain (National Weather
Service: Flagstaff Pulliam Airport). Small-magnitude debris flows
occurred during a rainfall event on July 24th and were the only
post-fire debris flows produced during the 2020 monsoon.

In addition to the seismic observations, other data types
collected include precipitation measurements, downstream
discharge, photo monitoring of debris flows, and hillslope
infiltrationmeasurements. These data can be used in conjunction
with seismic data in order to better calibrate the seismic
observations allowing for accurate determination of debris flow
magnitude, velocity, and grain size distribution. Given the
importance of these data for interpreting the seismic results, we
also archive these data and make them publicly available through

online databases where existing infrastructure exists or upon
request where it does not. Below we present data from one major
rainfall events and demonstrate some of the type of analyses
useful for debris flow characterization.

METHODS

The seismic data consist of raw continuous time series and
information on instrument responses that can be used to convert
instrument data to ground motion. The purpose of these data
are to characterize sediment transport and triggering in post-
wildfire debris flows associated with the Museum Fire. Future
uses of these data include estimating the magnitude, velocity,
location, and grain size of debris flows. This can be accomplished
by measuring signal amplitude, frequency content, and timing of
events recorded at multiple stations.

Continuous seismic data were collected while stations
were installed. Data collection occurred from August 2019
to October 2020, with most station removed during winter
2019–2020 and redeployed in June 2020. Data recorded by
these seismometers are publicly available from the Incorporated
Research Institutions for Seismology (IRIS) Data Management
Center (DMC) database (https://doi.org/10.7914/SN/1A_2019).
The name of the network is “Seismic monitoring of post-
fire debris flows in northern Arizona” and it has the FDSN
(International Federation of Digital Seismograph Networks)
code: 1A (2019–2020) (Porter, 2019).

Stations were deployed along drainages within the burn area
that were deemed most likely to produce debris flows. As the
goal of the experiment was to record debris flows associated with
the wildfire, priority was placed on deploying instrumentation
in close proximity to drainages and keeping instrumentation
safe rather than selecting sites likely to have low seismic noise,
good coupling to the ground, and open sky views for powering
the stations via solar panels. As such, seismometers were often
deployed in shallow holes along steep drainages, where digitizer
boxes were wired to trees to keep them from sliding downslope.
Placing them next to trees also served to protect them from
sediment and rocks moving downslope and from wood mulch
dropped from helicopters during heli-mulching operations for
reducing erosion risk. This led to increased station noise due
to wind in trees and shallow burial. The decision to deploy
instrumentation next to trees also led to power issues as days got
shorter later in the year. Shade from the trees limited the amount
of sunlight the solar panels received, which led to power failure
and downtime for individual stations during the 2019. For the
2020 deployment, larger solar panels were used, where possible,
to prevent power failure.

The seismic network consisted of a combination of Sercel
L-22 geophones loaned to the project by IRIS PASSCAL
(Portable Array Seismic Studies of the Continental Lithosphere)
and Nanometrics Meridian Post hole systems, which use
Nanometrics Trillium Compact 120s seismometers. The
Nanometrics instruments are owned by Northern Arizona
University. The L-22 instruments were 3-channel short-
period instruments with flat phase and magnitude responses
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at frequencies >2Hz. The Trillium Compact sensors are
broadband sensors with relatively flat phase and instrument
response between 0.008 and 108Hz. The L-22 instruments were
deployed using the IRIS PASSCAL BIHO quick-deploy boxes
and the Meridian Compacts use the Nanometrics quick-deploy
boxes. Maps of station locations and information on instrument
types are available with the archived data (https://doi.org/10.
7914/SN/1A_2019, Figure 1).

In addition to studying debris flows, the data recorded by this
seismic network are suitable for determining local earthquake
locations and focal mechanisms and for seismic imaging studies.
The network recorded a local, magnitude 3.3 event on October
13, 2020. The L-22 instruments are limited to studies that only
require high-frequency (>2Hz) seismic data while the Meridian
Compact data is useful for work requiring longer periods. The
stations were deployed within Northern Arizona’s San Francisco
Volcanic Field, specifically on Mount Elden and the Dry Lake
Hills, which are lava domes (Holm, 1988). Data from these
instruments may be useful for seismic analysis of the subsurface
geology beneath these volcanic features using techniques such as
receiver functions.

Other data that were collected include rainfall data recorded
by a network of radio-telemetered rain gauges operated by
the City of Flagstaff and Coconino County. These gauges are
triggered with every 1mm of rainfall and data are publicly
available (https://www.flagstaff.az.gov/4111/Rainfall-and-
Stream-Gauge-Data) with historical data available on request.
The city also operated two stream gauges within the alluvial
fan of SAWW, these gauges consist of a continuously operating
pressure transducer and a radio telemetry unit operating under
the National Hydrology Council ALERT 1 protocol (National
Weather Service, 2012). Streamflow data is available on request
to the City of Flagstaff Stormwater Section. Soil infiltration
measurements were collected on bare mineral soil with moderate
to severe burn severity using a mini disk tension infiltrometer
(https://www.metergroup.com/environment/products/mini-
disk-infiltrometer/) with a suction rate of 1 cm (Robichaud et al.,
2008). Water volume (mL) infiltrated and time of infiltration
were recorded. Infiltration measurements were converted
to field saturated hydraulic conductivity (Kfs) using curve
fitting techniques described by Vandervaere et al. (2000), and
empirical coefficients for sandy loam soil from Carsel and Parrish
(1988). A summary of these measurements is provided in the
Supplementary Material. Motion-activated game cameras were
installed on trees in many of the drainages monitored by the
seismic network. These were deployed to photograph debris
flows as they occurred to compare to seismic observations. Game
camera photos/videos will be made available upon request.

Data Analysis
Approximately eight debris flows during three rainfall events
were recorded by this network during the 2019 and 2020
monsoon seasons. As an example of the data collected, we
show preliminary data analysis for an event that occurred on
July 24, 2020. This event occurred during a monsoonal storm
which concentrated in the northern portion of the burn area.
During this storm, the Museum Fire North rain gauge, which

experienced the greatest rainfall, recorded ∼18mm of rain over
an hour. This rainfall produced several (>3) small debris flows
that initiated in the area denoted by the red oval in Figure 1. The
peak 15 min intensity of this storm recorded at the Museum Fire
North rain gauge was∼49mm/h. Debris flow hazard analysis was
modeled for intensities up to 40 mm/h for 15 min intervals for
stream segments within the burn area. The calculated likelihood
of debris flows for this type of event were estimated between
40 and 100% for the segments affected by the storm (Kean
et al., 2019). An examination of debris flow deposits showed that,
within the upper drainages, grain size ranged from boulders to
cobbles, and in the lower drainage, grain size was dominated
by very coarse sand to medium gravel (after Wentworth grain
size classification). The upper limit to the boulder clasts was
∼1m. Figure 2 shows an example of debris flow deposits from
the upper drainage. Downstream discharge peaked at 0.34 cms
(12 cfs) at the first road crossing within the city. The upstream
gauge, located near the seismic station and at the base of the
SAWWmountain channel constraint, clogged with sediment but
had high water marks indicating flow between 3 and 6 cms. Much
of the transmission loss between the gauges was likely due to
groundwater infiltration in the alluvial fan of SAWW and Dry
Lake Hills (more geologic context in Holm, 2019).

While this debris flow event was recorded at multiple stations,
we highlight data from one station, BOC2, which was located in
the lower drainage near a monitoring camera. BOC2 was located
on a bedrock outcrop adjacent to the channel. It was downstream
of the confluences of the small drainages, where debris flows
initiated, and the main stem of the SAWW (Figure 1). To process
the seismic data, we deconvolved the seismometer instrument
response from the signal to convert the raw data (in voltages)
to ground velocity, leaving the source-time function and Green’s
function. We then used the ground velocity data to calculate
total signal power, and power spectral density (Figure 2). The
top panel shows ground velocity (m/s), as well as, rainfall
amount (mm) and intensity (mm/hr) over 10 min increments.
The second panel shows signal power and the third shows the
power-spectral density [dB (m/s)2/Hz] at frequencies between 1
and 50 Hz.

A seismic signal consists of the convolution of three
components, the source-time function, the Green’s function, and
instrument’s response. The source-time function, in this case,
is the signal due to the debris flow’s propagation through the
channel, the Green’s function is the seismic response to the
earth’s structure, and the instrument response is how the seismic
instrument converts ground motion to voltages. The instrument
response is removed in the initial processing leaving the source-
time function and Green’s function. One of the challenges in
analyzing debris flows using seismic data is separating the Green’s
function and source time function, both of which may change
as sediment is removed or deposited. Further analysis of this is
a target for future work. Near BOC2, the channel bottom was
covered in sediment with no bedrock exposures in the channel
in the immediate vicinity of the station. Much of the coarse
sediment within the flow had been deposited above the station
and the signal is largely due to mudflow (Figure 2). Signals
associated with debris flows excite a wide range of frequencies
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FIGURE 2 | (A) Ground velocity from seismic station BOC2 and rain gauge data from Museum Fire North and Museum Fire East gauges for event on July 24, 2020.

(B) Signal power in dB (m/s)2. (C) Power spectral density plot. Power is in dB (m/s)2/Hz. (D) Game camera image of the mudflow arriving at camera location at 15:07.

All times are presented in local time (Mountain Standard Time). (E) Photo of upper-basin debris flow deposits from this event.
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(Figure 2) but start abruptly and taper off gradually, consistent
with those observed by Michel et al. (2019). High frequencies
observed prior to the debris flows are likely due to rain and
wind, while the debris flow excited a wider-range of frequencies.
We also observe impulsive signals that excite a wide-range of
frequencies prior to the debris flow arrival at the station, these
correlate well with the timing of lightning strikes and are likely
recordings of thunder. We compare our results to Michel et al.
(2019) who present power spectral density plots for debris flows
that occurred in the Chalk Cliffs, Colorado and Van Tassel,
California. The Chalk Cliffs channel bottom consisted of bedrock,
while the Van Tassel was sediment covered. At site BOC2, we see
similarity in frequency content between the July 24, 2020 event
and high sediment concentrated flows at both the Chalk Cliffs
and Van Tassel between 10 and 40Hz. Based on our observations
and the work of Michel et al. (2019), the 10–40Hz range appears
to be the best frequency range for determining flow grain size
independent of site affects, though future work is needed to
confirm this.

SUMMARY STATEMENT

In this submission we present several datasets collected to study
post-wildfire debris flow triggering and evolution. The goal
of this submission is to make these data including seismic,
photographic, rainfall, and infiltration measurements publicly
available to any interested party. These observations provide
a comprehensive dataset to study debris flow triggering, grain
size, and velocity, as well as, a tool for better assessing the
efficacy of using seismic readings for post-wildfire monitoring.
We encourage their use by the scientific community and
general public.
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