Red wood ants (*Formica rufa* group): their contribution to soil C and N pools and CO₂ emissions in subalpine conifer forests

Anita C. Risch (Syracuse University, USA)

Martin F. Jurgensen (Michigan Technological University, USA)

Martin Schütz (Swiss Federal Institute for Forest, Snow and Landscape Research, Switzerland)

Deborah S. Page-Dumroese (USDA Forest Service, USA)

Ants are important components of soil invertebrate community

Biodiversity

Ecosystem engineers

Provider of habitat

Red wood ants (*Formica rufa*-group) build large aboveground nests composed of organic material (twigs, needles, wood, resin)

Wood ants (*Formica rufa*-group) are ubiquitous in many European forests

Little is known on the contribution of these mounds to ecosystem C and N pools and CO₂ fluxes in forest ecosystems

Swiss National Park

Climate (Inner-alpine, continental)

Mean annual temperature 0.2 ± 0.7 °C Mean annual precipitation 925 ± 162 mm

Elevation 1650 to 3150 m a.s.l.

Tree species

Mountain pine (Pinus montana)

European larch (Larix decidua)

Stone pine (Pinus cembra)

Norway spruce (*Picea abies*)

Scots pine (Pinus sylvestris)

Four forest ecosystem in different successional stages

Stone pine/Larch (SP/L)

Mixed (Mix)

Mountain pine (MP)

Successional development

Methods

Ant mound survey: same stands/plots as forest survey

Methods Mound C/N and CO₂ sampling

Two mounds closest to stand center

= Samples for C and N analyses

 \mathbf{D} = CO₂ emission (bi-monthly, June – September)

Number of mounds per hectare

Number of mounds dependent on tree species composition, canopy closure and exposition

Mound volume

Highest volume in oldest SP stands

C/N concentrations of mound material

Mound C and N concentration not different (46.9%, 1.02%), but higher than forest floor (38.5%, 0.88%)

Mound C:N ratios not different, and similar to forest floor (47)

Mound C pools

Contribution of mounds to forest floor C pools

Contribution of mounds to forest floor N pools

MP: 3 kg/ha MP/L: 4 kg/ha Mix: 7 kg/ha

SP/L: 21 kg/ha

Only 0.8 to 4.8%

Mound CO₂ emissions

Range 0.8 to 8.6 g $CO_2/m^2/h$ average for the individual mounds over the entire period (Max 15.3)

No difference in emission among stand types

Mound vs forest floor CO₂ emission

Mounds are "hot spots" (3.5 to 12.4 times higher than FF)

On a hectare basis underestimation of 0.7 to 2.5%

Respiration of ants and other invertebrates

Organic matter decomposition

Root respiration

Mound CO₂ emissions

Top 3rd is location of "breeding chamber"

Changes in CO₂ emission

East-West diameter in cm

Ant respiration seems to be the dominate source of CO₂

Overall conclusions

Red wood ant mounds do NOT

Contribute much to ecosystem C and N pools

Contribute much to ecosystem CO₂ fluxes

Red wood ant mounds are

Increasing spatial heterogeneity / patchiness

"Keystone structures" Tews et al. 2004

