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A B S T R A C T   

Effective watershed management and protection of water resources from non-point source pollution require 
identification, prioritization, and targeting of pollutant source areas. Process-based hydrology and water quality 
models are powerful heuristic tools for land and water resources managers. However, because of their 
complexity, such models are often under-utilized as management prioritization and planning tools. In this paper, 
we present a prioritization, interactive visualization, and analysis tool (Pi-VAT) that is programmed to synthesize 
multi-scenario, multi-watershed outputs from process-based geospatial models. We demonstrate the utility of Pi- 
VAT to examine simulated hydrologic, sediment, and water quality response at the hillslope/hydrologic response 
unit (HRU) scale. We apply Pi-VAT to output from multiple watersheds and for multiple management scenarios 
and treatments from two geospatial models for watershed management: Water Erosion Prediction Project 
(WEPP) and Soil & Water Assessment Tool (SWAT). Pi-VAT was developed using the Shiny web application 
framework for the R programming language. In a matter of minutes, Pi-VAT can synthesize overwhelming 
amounts of output from process-based models into information useful for land and water resources managers. We 
illustrate the use of Pi-VAT to interactively identify, quantify, and visualize areas that are most susceptible to 
disturbance under different scenarios and provide a synthesis approach based on land use, soil type, and slope 
steepness. This approach guides land and water resources managers in prioritizing the areas of the watershed 
that provide the maximum reduction in pollutant loads while treating the least amount of area. Pi-VAT provides 
a flexible reactive platform for the development of decision support tools based on process-based models 
intended for watershed management and research applications.   

1. Introduction 

Water quality concerns from non-point source pollution (NPS) are a 
challenge for land and water resources managers. Effective management 
of NPS requires strategic targeting and prioritization of watershed areas 
for implementing best management practices (BMPs) (Diebel et al., 
2008). Such targeting and prioritization typically consist of the identi-
fication of pollutant source areas and subsequent management to reduce 
water quality degradation (Daggupati et al., 2011; Easton et al., 2017). 

Process-based hydrology and water quality simulation models have 

shown the capability to evaluate the potential effects of land manage-
ment and climate scenarios on water quantity and quality. For example, 
a review of various process-based distributed watershed models by 
Wellen et al, (2015) reported that 83% of the reviewed scientific studies 
(257) published between the year 1992 and 2010 used one of these five 
models: Soil and Water Assessment Tool (SWAT), Integrated Catchment 
Model (INCA), Annualized/Agricultural Non-Point Source pollution 
model (AGNPS/AnnAGNPS), Hydrological Simulation Program - 
FORTRAN (HSPF), and Hydrologiska Byråns Vattenbalansavdelning 
(HBV). Such models can provide a link between management decisions 
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and watershed response and provide a scientific basis for management 
decisions (Rode et al., 2010). The utility of these process-based models is 
not only to provide spatially explicit predictions of runoff and erosion 
but also to provide a deeper understanding of the key factors and 
dominant hydrologic processes and flow paths that drive the detach-
ment and transport of sediment and associated pollutants (Brooks et al., 
2015). Characteristically, such models have been successfully applied, 
predominantly by the scientific community for a management scenario- 
oriented impact assessment on water quality and quantity, to identify 
priority source areas, and to formulate management plans. For instance, 
the utility of the SWAT model has been widely demonstrated in the 
scenario-based evaluation of the efficacy of site-specific BMPs on water 
quality as well as in the targeting of BMPs placement for improving 
water quality (Briak et al., 2019; Daggupati et al., 2011; Easton et al., 
2010; Liu et al., 2019; Merriman et al., 2019; Park et al., 2014; Xu et al., 
2019). Similarly, the WEPP model has been successfully used for guiding 
watershed managers in the selection and placement of the BMPs in 
forested watersheds (Efta and Chung, 2014; Robichaud et al., 2007). It 
has also been applied for investigating the effectiveness of conservation 
management practices and targeted management in agricultural wa-
tersheds (Brooks et al., 2015; Pandey et al., 2009; Singh et al., 2011). 
Other models recognized in Wellen et al., (2015) were used to investi-
gate sediment and nutrients response under alternative management 
scenarios as well as to identify priority areas for erosion control mea-
sures and to assess the BMPs effectiveness on nutrient loading (Abdel-
wahab et al., 2014; Ahn and Kim, 2016; Bastrup-Birk and Gundersen, 
2004; Gudino-Elizondo et al., 2019; Luo et al., 2015; Zhang et al., 2020). 

Despite this demonstrated usefulness, the use of process-based 
models by managers in “what if” scenario testing has been limited to 
date. Ease of use, extensive model setup and training requirements often 
form barriers to the adoption and effective use of process-based models 
in the planning process (Garen et al., 1999). There is also a strong need 
to disseminate the information generated by these models to stake-
holders and decision-makers in a functional format. The recent evolu-
tion of web-based user interfaces for some models attempts to partly 
address these barriers. For example, SWATonline simplifies SWAT data 
querying as well as enables simple data visualizations (McDonald et al., 
2019); The Hydrologic and Water Quality System (HAWQS) makes it 
easier to set up and run the SWAT model at the hydrologic unit codes 
(HUCs) 8 to 12 or larger scale and provides users with summary visu-
alization capabilities and the ability to download an entire project to be 
used on a local computer (Yen et al., 2016). To enhance the use of 
process-based models in informed decision-making, an online watershed 
interface (WEPPcloud) has been developed to make use of the Water 
Erosion Prediction Project (WEPP) model across the US by watershed 
managers easier and more convenient (Dobre et al., n.d.). This interface 
was specifically developed for forestry applications as part of the Forest 
Service suite of models (https://forest.moscowfsl.wsu.edu/fswepp/) 
and its use recently has been extended to rangeland landscapes 
(WEPPcloud-RHEM) as well (Lew et al., n.d.). 

Web-based user interfaces make the models more accessible and 
easier to use, but do not necessarily provide the data summaries and 
visualizations in a functional format to compare multiple watershed 
simulations of different management options and facilitate ‘what if’ 
scenario testing. To develop an action plan and ensure appropriate and 
effective management practices are implemented, managers need to 
understand the key hydrologic drivers and factors (soil type, land use/ 
land cover, slope, and climate) involved in the transport of the pollutant 
and the sensitivity of these factors to pollutant transport. The amount of 
simulated output generated by process-based models especially when 
using the model to assess multiple management options over multiple 
years in unique land types within a watershed can be overwhelming. 
End-user (e.g., watershed managers) would require extensive training in 
geospatial analysis and modeling to process the output. In essence, 
process-based models are very useful tools for ingesting ‘Big Data’ as 
model input, however, they can also generate an equal amount of ‘Big 

Data’ that can be equally daunting for end-users to synthesize and 
extract useful knowledge for identifying and spatially prioritizing BMPs. 
A multiple scenario simulation from a hillslope or HRU based geospatial 
model for even a relatively small watershed and short daily weather 
time series can easily generate hundreds to thousands of targeting 
combinations (Fig. 1). 

Integrating “what-if” scenario information with decision support 
tools would enable watershed managers to harness the potential of so-
phisticated, process-based models and truly aid in decision-making. 
Brooks et al. (2015) emphasized the need to connect science and man-
agement by improving process-based planning tools such that crucial 
information is available to planners to target areas in the landscape. 
Brooks et al. (2015) demonstrated the use of a simplified web interface 
consisting of post-processing algorithms built on top of the WEPP model 
to effectively support BMP assessment and planning. 

The number of commercial and open-source platforms for hosting 
online tools has led to an explosion in web-based applications and has 
provided an opportunity to develop geospatial decision support tools. 
For example, tools developed using Shiny, an open-source web appli-
cation framework developed by the RStudio Team (R Core Team, 2021), 
have enabled the creation of interactive web applications that allow 
users to interact dynamically with the model simulations. Since its 
inception, the use of Shiny has increased steadily as evidenced by peer- 
reviewed papers through which specialists in academic fields dissemi-
nated knowledge to stakeholders (Kasprzak et al., 2020). While Shiny 
has been used across a diverse range of academic fields, to our knowl-
edge, few peer-reviewed papers in the earth and environmental sciences 
have used the Shiny web application framework. For instance, Klein 
et al. (2017) developed the webXTREME tool to facilitate agroclimatic 
risk evaluation under climate change. WebXTREME has provided an 
important link between scientists and decision-makers. Whateley et al. 
(2015) used Shiny to develop a web-based decision support tool that 
provides an interactive environment to water managers and stake-
holders to explore water supply system vulnerabilities to climate 
change. This tool, targeted at small-scale water supply systems, provides 
an opportunity for more dynamic and collaborative water resources 
management. 

The objectives of this work were to develop a stand-alone, post- 
processing, interactive analysis, and visualization tool that can ingest 
complex, spatially distributed output from geospatial hydrologic 
models, and to demonstrate its use as a decision support tool for 
scenario-oriented planning and management. We developed the 
Prioritization-Visualization and Analysis Tool (Pi-VAT) that synthesizes 
tabular and map-based outputs for multiple watersheds and scenarios. 
We demonstrate the utility of the tool with watershed case studies using 
outputs from two of the most well-known hydrologic management 
models: WEPP and SWAT. We describe its development and demon-
strate its use in evaluating and guiding land and water resources man-
agement decisions in three watershed case studies. 

2. Methods 

2.1. Interface implementation 

Pi-VAT is an interactive tool developed for the identification and 
prioritization of pollutant hotspots and areas suitable for targeted 
management. Currently, Pi-VAT ingests output from two of the most 
widely used hydrologic models WEPP and SWAT using the Shiny web 
application framework for the R programming language (Beeley and 
Sukhdeve, 2018; Chang et al., 2021; R Core Team, 2021). Pi-VAT is 
deployed on the shinyapps.io server and can be accessed at https: 
//cdeval.shinyapps.io/Pi-VAT/. The Pi-VAT source code can be found 
on the GitHub page of the tool (https://github.com/devalc/Pi-VAT). Pi- 
VAT requires users to have pre-computed scenario runs using either 
online or offline WEPP or SWAT interfaces. Information on summarizing 
and preparing multiple pre-computed scenarios for use in Pi-VAT is 
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Fig. 1. The “what-if” scenario testing and comparative analysis require further synthesis of the enormous datasets and resulting targeting combinations generated by 
process-based models. 

Fig. 2. General flow diagram of the comparative ‘what-if’ analysis in the Pi-VAT interface.  
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provided on the Pi-VAT’s GitHub page. 

2.2. Main interface components 

The Pi-VAT interface intuitively guides the user through a “what-if” 
analysis from data input to dynamic visualization (Fig. 2). Each tab on 
the Pi-VAT user interface consists of two sections: the input/control 
panel and the visualization/summary panel as shown in Fig. 3. The 
visualization/summary panel was implemented using the R wrappers for 
the Plotly, Leaflet, and DataTables (Cheng et al., 2021; Sievert, 2020; Xie 
et al., 2021) making it fully interactive. The input/control panel con-
tains four main options (denoted by numbers in Fig. 3) namely, data 
import options and three auto-populated dropdown menus for the 
watershed scenario, and the targeted water quality/quantity metric, 
respectively. The input panel provides users with the ability to upload 
output files from the hydrologic model, select water quality/quantity 
metrics of interest, and control visualization and data summaries by 
using the control buttons. 

We specifically included synthesis products based on feedback from 
watershed managers for scenario-testing watershed applications. Three 
of the most common suggestions are to provide the ability to (i) compare 
impacts from different management options within a single sub- 
watershed; (ii) identify priority watersheds or hillslopes to implement 
a particular management practice; (iii) assess trade-offs from the 
implementation of particular management practice. In the first case, the 
user needs to have the ability to visualize and compare multiple treat-
ments in a single watershed. In the second case, the user needs to be able 
to summarize and visualize differences across unique spatial units. In the 
third case, a manager may also want to better understand the implica-
tions of management options from multiple responses (e.g., reduced 
runoff and increased subsurface lateral flow) to identify whether a 
management practice may result in a positive environmental impact 
from one perspective but at the cost of creating another environmental 
problem from another perspective. In addition, a manager may want to 
identify the most sensitive areas in the landscape which give the greatest 
benefit from the application of a particular management practice (e.g., 

sediment reduction per unit area of the watershed treated). Further-
more, a manager may also want to ascertain unique soil, landscape, and 
climatic characteristics that make this identified landscape area very 
sensitive to the particular treatment. Managers can also be constrained 
by specific regulatory policies which limit the application of practice to a 
specific region (e.g., no logging timber on slopes > 30%). In this case, 
the manager would like to focus the analysis on treatable areas within 
the watershed. These management challenges are common to nearly all 
watershed studies (Brooks et al., 2015; Mulla et al., 2008; Rittenburg 
et al., 2015) and therefore we developed the tool (Pi-VAT) to address 
these objectives. 

Specifically, Pi-VAT provides the ability to graphically compare 
differences in the magnitude of a certain simulated output (e.g., sedi-
ment yield) from multiple management scenarios on a single chart 
(Heatmap/Bar chart). For spatial analysis, the tool can map these dif-
ferences in simulated output between two scenarios in a particular 
watershed. To identify watersheds sensitive to a particular management 
scenario, Pi-VAT also provides the option to generate charts and maps 
comparing the magnitude of a simulated output for a single manage-
ment scenario across multiple watersheds. It provides the option to 
select and analyze single or multiple hydrologic response output vari-
ables. Pi-VAT also provides cumulative distribution figures which 
display the percent of the hydrologic or pollutant response output within 
a watershed vs the cumulative percent area from which the pollutant 
was generated within the watershed. Users can then use slider bars to 
filter the output and identify the areas which contribute the greatest 
source loading per unit area of the watershed. This is particularly useful 
where a manager might have limited financial resources which only 
allow the treatment of a small fraction of the watershed. Similar filter 
options have been implemented to narrow the analysis to a particular 
slope steepness range. For example, Pi-VAT allows users to select and 
only display output from areas having a slope steepness greater than 
and/or less than a certain minimum and/or maximum slope. To assist 
users in the identification of key factors and hydrologic drivers, Pi-VAT 
continuously updates downloadable output tables based on user- 
selected options which include not only multiple output hydrologic 

Fig. 3. Example of the spatial visualization (Spatial-Viz) tab of the Pi-VAT interface.  
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response variables but also key soil, topographic, and climatic input 
factors. 

2.3. Site descriptions 

We selected three case studies from three regions consisting of either 
a forest or an agricultural system: Lake Tahoe Basin (California/ 
Nevada), Palouse (Washington), and WE-38 sub-watershed within the 
Mahantango Experimental Watershed (south-central Pennsylvania). We 
selected sub-watersheds in these regions based on the unique land uses 
and the associated land management and water quality concerns in each 
area. We first describe the sites, and in Section 2.4 describe the modeling 
scenarios. 

2.3.1. Lake Tahoe Basin 
Lake Tahoe, despite being in an ultra-oligotrophic state(Coats et al., 

2008; Hatch et al., 2001), has experienced long-term declining water 
clarity due to upland contributions of fine sediment and phosphorus 
(Sahoo et al., 2013). Previous research suggests that the primary pro-
ductivity of the lake has been increasing by about 5% per year (Coats 
et al., 2008), and in the last five decades the Secchi depth of Lake Tahoe 
has decreased by about 10 m (Kerlin, 2017). Fire suppression in the Lake 
Tahoe basin during the 20th century has resulted in forest floor accu-
mulation of duff and woody debris, which has increased the risk of 
frequent and more intense wildfires (Miller et al., 2010). Land managers 
in the basin are interested in comparing the impacts of wildfires and 
timber harvest on water quality to identify sensitive areas in the land-
scape for targeted management. In this case study, we used Pi-VAT to 
evaluate the effects of several forest treatments (thinning) and wildfire 
scenarios on sediment yield from multiple watersheds. We considered 
seven watersheds, with areas ranging between 4.1 km2 and 110 km2, 
and an average of 626 hillslopes in each watershed, and a total of 11 
simulated scenarios ranging from forest treatments (such as thinning 
and prescribed fire) to wildfires. This amounts to 48,202 combinations 
of hillslopes along with the associated soils, land uses, and slope 
steepness that were evaluated for targeted management. 

2.3.2. Palouse (Washington) 
Conventional tillage management on the steep, hillslopes of the 

dryland wheat-based cropping systems within the Inland Pacific 
Northwest ‘Palouse’ region has caused excessive soil erosion. Aggressive 
tillage with low residual ground cover has left a degraded landscape. It 
was estimated that the topsoil was completely removed from 10% of the 
cropland and one-fourth to three-fourths was lost from 60% of the region 
(USDA, 1978). Subsoil horizons in the region can often include dense 
subsoil, calcium carbonate (Bk), argillic (Btb), and fragipan (Btxb) soil 
horizons that lead to perched water tables, subsurface lateral flow, and 
saturation excess runoff processes (Brooks et al., 2012; McDaniel et al., 
2008). Erosion rates can be reduced through the adoption of conserva-
tion tillage practices however the effectiveness varies by topography, 
soil type, and climate (Kok et al., 2009). In this watershed case study, we 
examine the effects of tillage management on the sediment yield within 
the Thorn creek (109 km2) and Kamiache creek (40 km2) watersheds 
located within the 381 to 457 mm mean annual precipitation zone in the 
Palouse. Soil and water conservation districts are interested in incen-
tivizing conservation tillage practices on the hillslopes which contribute 
the greatest benefit to the cost ratio from the treatment application. 
These watersheds implement a three-year crop rotation consisting of 
winter wheat-spring barley-summer fallow. Each watershed has an 
average of 1590 hillslopes and a total of three simulated management 
scenarios resulting in 9,540 combinations. Three types of tillage systems 
were compared: a conventional tillage system (CT) with a chisel plow, a 
minimum or mulch tillage (MT) scenario, and a no-till system (NT). 

2.3.3. WE-38 experimental sub-watershed 
Managing the transport, delivery, and long-term legacy of excessive 

phosphorus loading from agriculturally dominated landscapes is a well- 
documented challenge particularly in the eastern US with a long history 
of dairy operations and impacts on soil chemistry (Kleinman et al., 2011; 
Sharpley et al., 2001, 1994; Stackpoole et al., 2019). Accurately iden-
tifying nutrient source areas, dominant delivery mechanisms, and the 
impact of management strategies on phosphorus loading is, therefore, an 
essential step to avoid long-term water quality impairment in down-
stream water bodies. WE-38 is a 7.3 km2 first-order upland agricultural 
experimental sub-watershed, located within the larger 420 km2 

Mahantango Creek Experimental Watershed. It was established in 1976 
by the USDA-Agricultural Research Service to better understand the 
water quantity and water quality implications of agriculturally-based 
farming systems in Pennsylvania and particularly for better under-
standing nutrient loading to Chesapeake Bay (Buda et al., 2011). WE-38 
is known for its variable source area hydrology driven by topographic 
variability and perched water tables over fragipan subsoil horizons 
(Bryant et al., 2011). In the case of the WE-38 sub-watershed, we use Pi- 
VAT to examine the effects of varying soil phosphorus content, manure 
application, and tillage and cropping management on phosphorus and 
nutrient losses (Collick et al., 2015). We considered six sub-watersheds 
of WE-38 with a total of 1,286 HRUs and eight simulated management 
scenarios resulting in a 10,288 combination of HRUs that can be 
considered for targeted management. 

2.4. Synthesis approach 

Our synthesis approach demonstrates the application of Pi-VAT for 
multi-watershed, multi-scenario simulated results from WEPP and 
SWAT with a focus on targeting and prioritizing management. We 
demonstrate the utility of the tool rather than assess the accuracy or 
validate the model predictions because several previous validation 
studies already have shown the accuracy of WEPP (Boll et al., 2015; 
Brooks et al., 2016; Elliot et al., 2015; Srivastava et al., 2020; Srivastava 
et al., 2017) and SWAT (Collick et al., 2015; Easton et al., 2010, 2009; 
Xu et al., 2019) model predictions. To demonstrate the utility of Pi-VAT, 
we used WEPP model output for the Lake Tahoe and Palouse case studies 
generated using the WEPPcloud interface. For the Lake Tahoe test case, 
we considered the current conditions (CurCond) scenario as the baseline 
scenario and for the Palouse test case, we considered conventional till 
(CT) as the baseline scenario. For the WE-38 case study, we used SWAT- 
VSA model output (Easton et al., 2008) and considered the high rate, 
spring surface manure application scenario as the baseline scenario in 
the synthesis. From the target combinations described in each case 
study, we respond to land and water resources managers’ desires to be 
able to identify which watershed and hillslopes to prioritize, and what 
treatment/management to implement to minimize water quality im-
pacts. In the synthesis approach, we answer the following general tar-
geting questions aimed at addressing the unique water quality problem 
in each case study described before:  

a. Which watersheds are a major concern with respect to the pollutant 
of concern?  

b. How sensitive is this watershed to the disturbances and changes in 
management practices?  

c. What amount of the watershed needs to be treated to reduce the 
loading of the pollutant of concern?  

d. Where are these source areas located in the watershed? How do they 
compare to the baseline scenario? What are the general driving 
factors in these areas? 

3. Results 

3.1. Lake Tahoe Basin 

The Lake Tahoe Basin case study presents Pi-VAT usefulness for 
identifying critical source areas of sediment in forested environments 

C. Deval et al.                                                                                                                                                                                                                                   
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with fire risk. A large amount of sediment yield and soil loss from both 
hillslopes and channels for the baseline scenario emerges from the 
Blackwood Creek watershed (41%) followed by the Ward Creek water-
shed (20%) (Fig. 4a, b). The sediment yield and soil loss are generally 
larger in the cases of fire scenarios, whereas these increases in the case of 
thinning management scenarios are comparatively small (Fig. 4c). The 
largest contribution of the total hillslope soil loss (54%) and the sedi-
ment yield (27%) across scenarios arises from the high severity (High-
Sev) fire scenario (Fig. 4d). In the case of the 85% thinning scenario 
(Thin85), this contribution of total hillslope soil loss and sediment yield 
across scenarios amounted to 2% and 4% respectively. 

More than 80% of the total sediment yield in the Blackwood Creek 
watershed across three different scenarios comes from only 25% of the 
total hillslope area (Fig. 5a). In this 25% of the total hillslope area, the 
cumulative sediment yield increased from the baseline scenario by 195 
Mg for the thinning scenario (Thinn85) and 1264 Mg for the low severity 
fire scenario (LowSev), respectively (Fig. 5c). The relative difference in 
sediment yield between the comparison scenario and the baseline sce-
nario from all hillslopes in the Blackwood Creek watershed (Fig. 5b) and 
Fig. 5d shows the same for the top 25% of the total hillslopes contrib-
uting maximum sediment yield. Table A.1 lists the top 15 hillslopes with 
a maximum increase in sediment yield relative to the baseline scenario. 
For example, the highest absolute increase in sediment yield (25191 kg 
ha− 1) compared to the baseline scenario occurs from hillslope 2211 
which is characterized as a melody rock outcrop soil and an average 
slope steepness of 42% (Table A.1). For each of these top 25% contrib-
uting hillslopes, Supplemental Table A.3 lists the sediment yield from 
the comparison scenario and its relative change from the baseline sce-
nario along with the land use, soil characteristics, and slope description. 
Approximately 85% of these hillslopes have a steepness greater than 
30%, and the majority of these soils are rock outcrop complexes or sandy 
loam soils. 

3.2. Palouse 

The Palouse case study presents Pi-VAT usefulness for identifying 
critical source areas of sediment of agricultural basins under different 
tillage intensities. Relatively large soil losses from both hillslopes and 
channels for the baseline scenario occur in the Thorn Creek watershed 
whereas relatively large sediment yield occurs from the Kamiache Creek 
watershed (Fig. 6a). Pi-VAT visuals indicated that the majority of the 
sediment yield in the region (67%) was generated from the Kamiache 
Creek watershed with a much smaller percentage (33%) generated from 
the Thorn Creek watershed (Fig. 6b). When compared across different 
management scenarios, the relative sediment yield and soil loss from the 
Kamiache Creek watershed occurs in the following order: CT > MT > NT 
(Fig. 6c). The largest contribution (40%) of the total hillslope soil loss 
and the sediment yield across scenarios arises from the CT practices 
(Fig. 6d), whereas the smallest contribution (25%) of the total hillslope 
soil loss and the sediment yield across scenarios arises from the NT 
practices (Fig. 6d). 

About 80–85% of the total sediment yield in the Kamiache Creek 
watershed across the three different scenarios comes from only 15% of 
the total hillslope area (Fig. 7a). In this 15% of the total hillslope area, 
the cumulative sediment yield decreased by about 6 Mg and 11.5 Mg by 
switching from CT to MT and NT management practices, respectively 
(Fig. 7c). Fig. 7b shows the relative difference in sediment yield between 
the comparison scenario and the baseline scenario from all the hillslopes 
in the Kamiache Creek watershed, and Fig. 7d shows the same for the top 
15% of the total hillslopes contributing maximum sediment yield. 
Table A.2 lists the top 15 hillslopes with a maximum increase in sedi-
ment yield relative to the baseline scenario. The highest absolute in-
crease of 4.08 kg ha− 1 from the baseline scenario occurs at hillslope 23 
which has an average slope steepness of 17% and Chard silt loam soil 
(Table A.2). Supplemental Table A.4 lists the sediment yield from the 
comparison scenario and its relative change from the baseline scenario 
for these top 15% of the total contributing hillslopes. Generally, soil 

Fig. 4. Example application of synthesis approach in the Lake Tahoe basin. Relative normalized response in water quality/quantity metrics from (a) different 
watersheds for the current conditions (CurCond) baseline scenario and (c) different scenarios for Blackwood Creek watershed. Percent of total water quality/quantity 
metrics across (b) all compared watersheds for the baseline scenario and (d) all compared scenarios for Blackwood Creek watershed. 
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Fig. 5. Example application of synthesis approach in the Blackwood Creek watershed (Lake Tahoe basin): (a) cumulative normalized sediment yield (%) vs total 
hillslope area (%) for three scenarios; (b) difference plot (LowSev minus CurCond) for sediment yield (kg ha-1) from all hillslopes, where negative/positive values 
indicate a net decrease/increase in sediment yield (kg ha-1) ; (c) cumulative total sediment yield (kg) vs total hillslope area (%) for different scenarios; and (d) 
difference plot (LowSev minus CurCond) for sediment yield (kg ha-1) from the top 25% hillslopes with the largest contribution. 

Fig. 6. Example application of synthesis approach in the Palouse. Relative response in water quality/quantity metrics from (a) different watersheds for the baseline 
scenario (CT); (c) different scenarios for Kamiache Creek watershed. Percent of total water quality/quantity metrics across all the compared: (b) watersheds for the 
baseline scenario; (d) scenarios for Kamiache Creek watershed. 
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Fig. 7. Example application of synthesis approach in Palouse: (a) cumulative normalized sediment yield (%) vs total hillslope area (%) for different scenarios in for 
Kamiache Creek watershed; (b) difference plot (conventional till [CT] minus no till [NT]) for sediment yield (kg ha− 1) from all hillslopes in the Kamiache Creek 
watershed; (c) cumulative total sediment yield (kg) vs total hillslope area (%) for different scenarios in for Kamiache Creek watershed; and (d) difference plot (CT 
minus NT) for sediment yield (kg ha− 1) from the top 15% hillslopes that have the largest contribution in the Kamiache Creek watershed. 

Fig. 8. Example application of the synthesis approach using SWAT in WE-38 experimental watersheds: (a) Mineral and organic phosphorus (kg) leaving the main 
channel for each subbasin; Difference plots (high rate, spring surface manure application [business as usual] scenario minus the background losses from high soil P 
with no manure application scenario) for (b) sediment phosphorus (kg ha− 1) and (d) soluble phosphorus (kg ha− 1) from all subbasin in the WE-38 watershed. (c) 
Mineral and organic phosphorus (kg) leaving the main channel for subbasin 3 across different scenarios. 
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erosion increased with slope steepness and slope length and was greatest 
where conventional tillage practices were employed in winter wheat- 
spring barley, summer fallow rotations in Chard silt loams which have 
dense calcium carbonate Bk horizon at ~ 90 cm below the soil surface. 

3.3. WE-38 

The Pi-VAT analysis of WE-38 indicates a phosphorus response to 
management which is sensitive to treatment and the form of the phos-
phorus transported. Mineral and organic phosphorus (kg) transported 
with water out of the reach decreases in the following reach order 
number 6 > 1 > 2 > 3 > 4 > 5 (Fig. 8a). However, when normalized by 
the area of each subbasin, the largest transport of mineral P attached to 
the sediment and soluble P into the reach occurs from subbasin 3 in the 
business-as-usual scenario (Fig. 8b and d). Also, for the same scenario, 
the amount of mineral P attached to the sediment transported into the 
reach decreases by subbasin in the following subbasin order number 3 >
6 > 5 > 2 > 4 > 1, and for the transport of soluble P decreases by the 
subbasin order number 3 > 1 > 4 > 2 > 5 > 6 (Fig. 8b and d). The 
highest mineral phosphorus (20%) and organic phosphorus (18%) 
transported through stream reach 3 compared across all the scenarios 
occur for the business-as-usual scenario. Whereas adopting a low-rate 
spring injection manure application method, the mineral phosphorus 
and organic phosphorus transport through stream reach 3 reduces to 8% 
and 11%, respectively. Reductions in organic (a), sediment (b), and 
soluble (c) phosphorus losses from corn silage land within subbasin 3 by 
converting from business-as-usual manure application methods to the 
high-rate spring injection method are displayed in Fig. 9. The reduction 
in phosphorus transport from an alternative or comparison management 
option/scenario relative to a baseline scenario along with the specific 
land use, soil type, and slope descriptions for organic, sediment, and 
soluble phosphorus output responses are listed in Supplemental 
Tables A.5–A.7, respectively. 

4. Discussion 

In each of the case studies, Pi-VAT was able to ingest large output 
files from multiple watersheds for multiple management scenarios. 
Synthesis results very clearly identify not only the greatest hydrologic 
response to treatment but also where the pollutant was generated, the 
type of pollutant which was most sensitive, and knowledge on key 

factors and characteristics (soil type or topographic) of the most sensi-
tive landscape positions. This type of scenario comparison and detailed 
synthesis is cumbersome as these hydrologic models are developed to 
provide output for one scenario at a time. Comparison of multiple sce-
narios in WEPP, for example, often requires a user to upload output files 
into spreadsheets or use programming languages such as R which is very 
time-consuming and complicated for typical land managers who would 
like this type of comparative analysis. Pi-VAT significantly reduced the 
time and complexity of such comparative analyses allowing the man-
agers to carry out the ‘what-if’ analysis in a matter of minutes. 

In all three case studies, we saw that the effectiveness of manage-
ment practices was not equal across a landscape suggesting that targeted 
management strategies rather than blanketed management would be 
successful and will likely be cost-effective. This is a well-known and 
documented finding for large watershed management studies (Walter 
et al., 2000). Here, however, we showed that Pi-VAT can quickly visu-
alize this using modeling output especially when a land manager may be 
trying to convince stakeholders and investors of implementing a tar-
geted management approach. Not only was Pi-VAT able to show where 
targeted responses to management will occur in these watersheds, but 
the tool also quickly provided the location and characteristics of the 
targeted locations as well as the hydrologic responses in the dominant 
hydrologic flow paths. In particular, for WE-38, we see that the phos-
phorus response to treatment varied by the delivered form of phos-
phorus. Pi-VAT was able to show that this varied response by the 
delivered form of phosphorus was also associated with the hydrologic 
pathways. For instance, the spatial patterns of sediment-bound phos-
phorus were similar to that of the runoff from the HRUs. 

We demonstrated using Pi-VAT that comparative visualization and 
analysis can help identify pollutant source areas for prioritizing targeted 
management. For all three cases, Pi-VAT’s comparative analysis was 
able to directly identify locations in the landscape where the greatest 
relative unit decrease in the response of the pollutant of concern 
occurred from the application of different management practices. For 
example, generally in the Lake Tahoe and Palouse analysis, we found 
that specific soil types with restrictive soil horizons were often the most 
sensitive to treatments. In the Lake Tahoe case study, land types char-
acterized as having steep slopes with rock outcrops and gravelly sandy 
loam soils had the potential to generate high to very high surface runoff. 
In addition, these land types were often identified as landscape positions 
having the greatest sensitivity to alternative management practices. 

Fig. 9. Difference plots (high rate, spring surface manure application [business-as-usual] scenario minus the high-rate spring manure injection scenario) for organic 
phosphorus (a), sediment phosphorus (b), and soluble phosphorus (c) from corn silage land cover in subbasin 3. 
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Given the abundance of process-based hydrology and water quality 
models coupled with the increased use of data-driven analytics, the 
broader opportunities for the hydrologic community to integrate models 
with decision tools are vast and yet unrealized (Guswa et al., 2014). 
Such integration would enable land and water resources managers to 
harness the potential of these sophisticated models in decision-making. 
With the three case studies, we demonstrated the potential utility of Pi- 
VAT, as a standalone tool, in bridging the barriers in the use of two 
commonly employed sophisticated hydrology and water quality models 
(WEPP and SWAT) for management prioritization. By making the results 
available to managers in an interactive and functional format, Pi-VAT 
has the potential to assist watershed managers in using the physically 
based models more regularly alongside their current planning process 
and effectively communicating the implications of proposed 
managements. 

5. Conclusions 

Land and water resources managers are interested in the optimal use 
of conservation dollars to protect water resources from NPS sediments, 
nutrients, and other water quality issues associated with land manage-
ment practices. This requires identifying, prioritizing, and targeting 
critical source areas for implementing conservation management prac-
tices. Process-based models that account for the relevant physical pro-
cesses are powerful tools and can be effective for prioritization and 
targeted watershed management provided the outputs from these 
models are made available to the managers in a more functional format. 
We demonstrate the use of Pi-VAT to interactively identify, quantify and 
visualize the areas that are most susceptible to disturbance and change 
in management. We provide a synthesis approach based on land use, soil 
type, and slope steepness such that the synthesized data and visuals can 
aid managers in identifying watersheds/subbasins of concern; evalu-
ating the sensitivity of these watersheds/ subbasins to land management 
practices; quantifying and isolating source areas for treatment/man-
agement and understanding factors driving hydrologic and water qual-
ity response. We demonstrate the utility of Pi-VAT in facilitating a better 
understanding of the critical pollution source areas and in devising an 
action plan. The simplicity and accessibility of this web-based interac-
tive tool along with compatibility to process both WEPP and SWAT- 
based outputs can greatly support watershed planning using complex 
process-based models. The tool was developed such that it can be 
potentially quickly modified to ingest output from any model that can 
provide tabular files from spatial modeling units represented by geo-
spatial maps and therefore has the potential to be widely adopted as a 
decision support tool for multiple applications. 
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