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ages whatsoever arising out of the use of or inability to use
LISA, even if the authors have been advised of the possibility
of such damages or of problems with the software.

Efforts have been made to see that LISA is reliable, but it
is a model of reality, not reality itself. The user should have
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results to actual field conditions.
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The use of trade or firm names in this publication is for
reader information and does not imply endorsement by the
U.S. Department of Agriculture of any product or service.

ACKNOWLEDGMENTS

The development of LISA has been a team effort with many
participants. Rod Prellwitz (Intermountain Research Station)
recognized the need for and conceived the idea of a proba-
bilistic Level | landslide hazard analysis using the infinite slope
stability model. He played an integral role throughout the
LISA program development. Gordon Booth (Intermountain Re-
search Station) initially suggested the Monte Carlo approach
to us. Dr. Terry Howard and Dr. Clarence Potratz (Univer-
sity of Idaho) and Dr. Henry Shovic (Gallatin National Forest)
were involved in early LISA development. Several of our users,
in particular the Gifford Pinchot National Forest geotechni-
cal group, have contributed greatly by their efforts in applying
LISA to field situations and effectively communicating the re-
sults to land managers. Their feedback to us during the de-
velopment process has been enormously helpful and is much
appreciated. We also appreciate the drafting of figure 5.7 by
Karl Anderson, Gifford Pinchot National Forest.

A CAVEAT
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ment and common sense, both in developing input distribu-
tions and interpreting the results. It does not give a unique
“right” answer, It is a tool to help the user understand slope
stability processes, quantify observations and judgments, and
document and communicate those observations and judgments
to other geotechnical specialists and to land managers. Do
not rely on LiSA alone, but add it to your existing toolbox.
Any answer that one desires can be obtained by altering the
input data. Without rationally justifying the input used, and
without correctly understanding and interpreting the output,
LISA becomes little more than a game of numbers.

Furthermore, LISA does not provide a complete risk analysis,
The consequences of slope failures (such as the potential for |
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or the potential for injury or loss of [ife) should be assessed by
users.
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RESEARCH SUMMARY

The Level | Stability Analysis (LISA) computer program is
a tool to help estimate the relative stability of natural slopes
or landforms. LISA results are intended to support manage-.
ment decisions at the multi-project or resource allocation level
of planning. The primary use of the probability of failure esti-
mated using LISA is to make qualitative, relative comparisons
between the stability of landforms, and to identify areas that
should be targeted for additional analysis. LISA also can be
used to estimate the relative decrease in stability of a land-
form aftef timber harvest due to a potential reduction in esti-
mated tree root strength and an increase in groundwater lev-
els. The probability of failure also can be used quantitatively
in a risk analysis, such as an expected monetary value {(EMV)
decision analysis.

LISA uses the infinite slope stability model to compute the
factor of safety against failure for a given set of in situ con-
ditions. The factor of safety (FS) is the ratio of the forces
resisting a slope failure (tree root strength and soil shear
strength) to the forces driving the failure (gravity). A slope
with an F'S greater than 1 is expected to be stable; a slope
with an F'S less than 1, unstable. The calculation of an F'S
with a single set of input values is called a deterministic anal-
ysis. However, it is recognized that there are variability in in
situ conditions on a given slope or landform and many un-
certainties in estimating input values for the variables in the

infinite slope equation. Therefore, LISA uses Monte Carlo sim-
ulation to estimate the probability of slope failure rather than
a single F'S value. Monte Carlo simulation is useful for model-
ing an attribute that cannot be sampled or measured directly.
The FS is such an attribute. A large number of Monte Carlo
passes (say 1,000) is made with repeated random samplings of
possible input values and the calculation of a factor of safety
for each pass. The end result is a histogram of the calculated
factors of safety and the probability of failure. LISA calcu-
lates the probability of failure by dividing the total number of
passes into the number of factors of safety less than or equal
to 1.

It is common to view the probability of an event as the like-
lihood of the event occurring. This meaning does not work
well for the probability of failure in a large, variable landform.
Viewing the probability of failure as the relative frequency of
failure events is more realistic. For purposes of estimating the
consequences of failure, the probability of failure also can be
thought of as the portion of the land area in, or potentially
in, a failed state during the period appropriate to the analy-
sis. However, this meaning should be used with caution. The
validity of the meaning depends on the scale of the analysis
and should be checked with a landslide inventory. LISA does
not simulate the actual number of failures, nor the size or lo-
cation of individual failures. LISA provides the hazard, but the
potential consequences still must be evaluated by the user.
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Introduction

This report provides comprehensive information required to use LISA intel-
ligently. The goal was to give the user a sufficient reference manual for under-
standing and obtaining input distributions, understanding the concepts and
methods LISA uses, and interpreting LISA results, and to be a guide for program
operation. This report, therefore, has been divided into two parts: part 1 is the
reference manual and part 2, the program operations guide. Important points
throughout this report are set in italic and marked by a block in the outside
margin. , \

It is essential that the user understands the fundamentals and concepts pre-
sented in part 1, or meaningless or misleading results might be obtained using
LISA. However, understanding part 1 may be made easier for the uninitiated
user if one first becomes familiar with LISA by running the demonstration exer-
cise in part 2, chapter 3.

The Research Summary explains what LISA does and what the program re-
sults mean. It can be included, along with user additions, in reports of LISA re-
sults to help land managers understand the methods that have been applied.

The detailed Table of Contents functions as a reference device, assisting the
reader in locating subjects by page number. The numeric system used to iden-
tify section and subsection headings assists the reader in locating cross-referenced
sections. A list of symbols can be found after this introduction.

Part 1 of this report consists of six chapters and four appendices. Chapter 1
introduces the philosophy behind probabilistic slope stability analysis. Chap-
ter 2 reviews probability and statistics fundamentals. Chapter 3 describes the
infinite slope equation and its sensitivity to various input parameters. Chap-
ter 4 describes details of the methods used in the LISA program and interpreta-
tion of results. Chapter 5 discusses how to select input distributions and values
describing those distributions, both in general and for each variable in the in-
finite slope equation. Chapter 6 contains two examples of the range of uses to
which LISA can be applied. References cited in part 1 are given after chapter 6.

Appendix A shows the derivation of the infinite slope equation with a phreatic
surface parallel to the slope. Appendix B gives a detailed literature review of
root strength. Appendix C discusses the rationale for selecting the suggested
PDF’s for root strength. Appendix D discusses using rain or rain-on-snow return
periods with LISA probabilities of failure to arrive at an estimate of the likeli-
hood of failure events occurring.

~ Part 2 contains four chapters and four appendices. Chapter 1 gives installa-
tion instructions. Chapter 2 gives general principles on how to run LISA. Chap-
ters 1 and 2 generally will be all that are needed to get the user started. Chap-
ter 3 describes in detail LISA operation, including screen prompts and error



messages and a demonstration exercise. Chapter 4 describes use of DLISA, the
deterministic version of LISA. The reference cited in part 2 is given after chap-

ter 4.

Appendix A describes how to download LISA and DLISA from the Data Gen-
eral computer at Moscow, ID. Appendix B describes how to use the Software
Reference Center on the Data General computer in the Washington, DC, of-
fice to obtain information on the latest program revision. Appendix C lists the
equations used in DLISA. Appendix D is a list of error messages from both LISA
and DLISA with cross references into chapters 3 and 4.

Documented source code (Hall and Kendall 1992) is available separately by
special request made to the authors. Additional examples of LISA applications
have been described by Hammond and others (1992) and Hammond and others

(1988).

List of Symbols

A
A

a

ay

Bla,b, P, Q]
bf
BNI(z,s,7]

Capp
CDF
CH
CL

Angular grain shape
Area of soil in a root count sample

Minimum value specified for a uniform, triangular, or beta
PDF

Root cross-sectional area for the ith size class
Total cross-sectional area of all roots in a root count

Maximum value specified for a uniform or beta PDF, and
apex of a triangular PDF; also width of slice in infinite slope
derivation

Notation specifying a beta PDF

Board foot = 12 by 12 by 1 inches

Notation specifying a bivariate normal PDF
Maximum value specified for a triangular distribution

Apparent soil cohesion caused by interpretation of a curved
Mohr-Coulomb failure envelope

Apparent soil cohesion caused by capillary suction
Cumulative distribution function

USC designation for fat clay

USC designation for lean clay

Sample coefficient of variation = s/&

Population coefficient of variation = ox/px

Sample covariance between X and Y = rsxsy

~ Population covariance between X and Y = poyoy

Additional shear strength caused by tree roots
Effective soil cohesion
Soil depth measured vertically

Apparent soil depth measured along a cutslope face




ft or’

f(=)

GC

GM

GP

GRC

GRI

Guw

GW

Hik, f1,+, fal

hy

inor”

kg1, kg2

1b
LISA
Lz, s]
LSI
MH
ML

Soil depth measured using seisinic refraction; depth is mea-
sured perpendicular to the refractor surface

Bulk density of minus 2min fraction of soil

Vertical height of soil above the phreatic surface = D — Dy,
Relative density of soil

Diameter of a root

Vertical height of phreatic surface

Expected value of a random variable X

Variance of a random variable X = crg{

Longitudinal stiffness modulus of a root

Factor of safety

Average resisting tensile force of roots in the ith size class;
also fraction of observations in the ¢th class of a histogram
PDF

Foot

Functionvof z that describes the Y-ordinate of a PDF curve
USC designation for clayey gravel

USC designation for silty gravel

USC designation for poorly graded gravel

Geologic resources and conditions data base

Geologic resource inventory

.Specific gravity of solids

USC designation for well-graded gravel

Notation for histogram PDF with k classes and f, percent in
each class '

Vertical height of equipotential line
Inch
Number of classes in a histogram PDF

Empirical coefficients to estimate angle of internal friction
from D,

Pound

Level I stability analysis

Notation specifying a lognormal PDF
Land systems inventory

USC designation for plastic silt

USC designation for non plastic silt

Number of years



OCR

pcf
PDF

PI
psf
P[An B]

P[B]
P[B]
P[B\A]

P[FS < 1]or

SARA
SC
SM
SP

Normal force at the base of the slice in the infinite slope
derivation

Effective normal force
Number of data values or observations in a sample

Notation for a normal PDF¥ with mean Z, and standard devi-
ation s ‘

Number of roots in size class ¢

Organic carbon content of soil
Overconsolidation ratio

One of two shape parameters for a beta PDF

Pounds per cubic foot

Probability density function
Plasticity index
Pounds per square foot

The occurrence of event B given that event A has occurred
= P[A]P[B\ 4]

The probability that event B will occur
The probability that event B will not occur = 1 — P[B]

The probability that event B will occur given that event A
has occurred. This is called a conditional probability and is
used when the probability of event B depends on the occur-
rence of event A.

The probability of F'S being less than or equal to 1, or the
probability of slope failure

One of two shape parameters for a beta PDF
Tree surcharge

Sample correlation coefficient

Coefficient of determination

Rounded grain shape

Return period of event ¢

Random variable

Standard deviation of sample data

Soil shear strength

Subangular grain shape

Stability analysis for road access (Level II)
USC designation for clayey sand

USC designation for silty sand

USC designation for poorly graded sand




SPT
SR
SRI

SX

Tla,b,¢]
T-99
U OT Uy

Ug

UscC

Ula, b]
Var[X]

QNK‘[ &)
5

Y O Ym
Va

Ymax

Standard penetration test (ASTM D-1586)

Subrounded grain shape

Soil resource inventory

Standard deviation of sample data for random variable X

Shear force acting on the base of a slice in the infinite slope
derivation

Average tensile strength per foot cross-sectional area for the
ith class

Normal component of root tensile resistance
Tensile strength of individual roots

Weighted average root tensile strength per average root cross-
sectional area of all size classes

Average tensile root strength per unit soil area
Tangential component of root tensile resistance
Notation for a triangular PDF

ASHTO test designation for the standard Proctor test

Pore-water pressure

'Pore-air pressure

Uplift force on the base of a slice in the infinite slope deriva-
tion caused by pore-water pressure, u

 Unified Soil Classification system (ASTM D-2487-85 and

D-2488-84)

~ Notation for a uniform PDF

Variance of a random variable X = 031(

Gravimetric moisture content = weight of water/weight of
solids x 100%

Total weight of a soil slice in the infinite slope derivation
Mean of sample data set

Random variable X

Random variable YV

Thickness of the shear zone

Natural slope angle, in percentage or degrees in DLISA; in
percentage in LISA

Artificial slope angle in degrees or ratio
Moist soil unit weight
Dry soil unit weight

Maximum unit weight obtained with a standard laboratory
test such as standard (T-99) or modified (T-180) Proctor
test



Ysat

Yw

i
fLx or p

o' or oy,
oy
OR
gx Or O

T

¢b

!
T

iz
/
ult

Pu

Saturated soil unit weight

Unit weight of water = 62.5 pcf

Angle of root shear distortion

Mean of the logarithm of data values

Mean of random variable X

Population correlation coefficient

Effective normal stress

Standard deviation of the logarithm of data values
Tensile stress developed in the root at the shear plane
Standard deviation of random variable X

Soil shear strength; also shear stress

Skin friction stress along a root

Effective angle of internal friction

Apparent effective angle of internal friction caused by inter-
pretation of a curved Mohr-Coulomb failure envelope

Slope of the line relating capillary suction and apparent soil
cohesion :

Residual angle of internal friction

Peak angle of internal friction

Ultimate angle of internal friction, equivalent to P,
Particle-to-particle friction angle

Estimation of a population (true) parameter from sample
data (e.g., i or )
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CHAPTER 1—CONCEPTS IN PROBABILISTIC
SLOPE STABILITY ANALYSIS

1.1 Applicability of LISA

LISA is a probabilistic model intended to be used primarily for relative land-
slide hazard evaluation for resource allocation, forest planning (land manage-
ment plans), timber sale allocation, environmental assessment reports (EARs),
and transportation planning (Prellwitz and others 1983). LISA can delineate
areas susceptible to broad-scale landslides to alert land managers as to where
the hazard is greatest. LISA also can be useful for project planning (Level II) to
evaluate the stability of natural slopes in cutting units and the effects of timber
harvest on stability.

LISA is a tool to be used by investigators who have some knowledge and ex-
perience concerning landslide behavior and geotechnical properties of soils. It
requires engineering judgment and common sense, both in developing input dis-
tributions and interpreting the results. It does not give a unique “right” answer.
It is a tool to help the user understand slope stability processes, quantify obser-
vations and judgments, and document and communicate those observations and
judgments to other geotechnical specialists and to land managers. Do not rely
on LISA alone, but add it to your existing toolbox. Any answer that one may
desire can be obtained by altering the input data. Without rationally justifying
the input used, and without correctly understanding and interpreting the out-
put, LISA becomes little more than a game of numbers.

LISA does not provide a complete risk analysis; the impact or consequence of
potential failures needs to be evaluated by the user. For example, the user may
want to assess the potential for damage to timber and fisheries resources or to
roads or structures, or the potential for injury or loss of life resulting from slope
failures.

1.2 What Is a Probabilistic Analysis? (Deterministic vs.
Probabilistic Analysis)

Typically in day-to-day engineering work, slope stability analyses are per-
formed using limit equilibrium equations to obtain a calculated factor of safety
against failure. A slope with a factor of safety greater than 1 is expected to be
stable, whereas a slope with a factor of safety less than or equal to 1 is expected
to be unstable. This calculation of a single factor of safety, given a single set of
input values, is a deterministic analysis. However, it is recognized that there
are many uncertainties in estimating input values for an analysis. Variability
and uncertainty in soil shear strength parameters are due both to variation in
soil properties across the site and to measurement errors in field and laboratory
testing. Groundwater levels vary spatially and temporally. There are uncer-
tainty and variability in the other factors as well, all of which yield uncertainty
as to the precise meaning of the factor of safety value. That is, it is recognized
that a slope-with a calculated factor of safety of 0.9 may not fail, and one with
a calculated factor of safety of 1.1 might fail. Thus, design factors of safety of
1.2 to 1.5 often are used to give the engineer a conservative buffer against uncer-
tainty and spatial variability.

A probabilistic analysis provides an estimate of the probability of slope fail-
ure, rather than the factor of safety, by using probabilistic models to quantify
the uncertainty ahd variability associated with the prediction of slope stability.
The primary advantage of a probabilistic analysis is that it logically and



systematically accounts for uncertainty and variability in the stability analysis
and communicates to all concerned that uncertainty and variability have been

considered. With a probabilistic analysis, a single value for each input parame-
ter is no longer required. Rather than modeling a site as homogeneous, we can
deal with the site’s variable factors.

A probabilistic analysis also provides results that can serve as input for a decision-
making analysis in the light of recognized uncertainty. Such analyses require a
probability of failure (in other words, hazard) and the consequences of failure
in order to evaluate risk. In a risk analysis, the hazard and its consequences
associated with various decision alternatives are evaluated to aid in decision
making. In the context of the following discussion, hazard is defined as the cal-
culated probability of slope failure, and risk is defined as a measure of the so-
cioeconomic consequences of slope failure (susceptibility to losses). Two slopes
may have the same estimated probability of slope failure and therefore the same
hazard (as estimated by LISA). However, if a bridge or an anadromous fisheries
stream lies below one of the slopes and not the other, the risks associated with
failure of the first slope are much greater than are those associated with the
other slope. Comprehensive risk analysis is beyond the scope of this manual.

1.3 How to Perform a Probabilistic Analysis—Monte Carlo
Simulation

Most probabilistic methods described in the literature focus on the analysis

of individual slopes and consider only the variability of soil cohesion, angle of
_internal friction, or groundwater, or a combination of these. A closed-form solu-
tion is derived for the mean and standard deviation of the factor of safety, which
has an assumed probability distribution (usually normal, lognormal, or beta),
and then a probability of failure is calculated (Chowdhury and Tang 1987). One
problem with these methods is that the variabilities of other important factors, -
~such as slope and soil depth, are not considered. One reason all factors are not
considered as stochastic variables is that the calculus needed to evaluate the in-
tegrals resulting from the derivation of the probability distribution of the factors
of safety would not be tractable. However, when analyzing large areas, as in re-
source planning, all of the input factors have sufficient spatial variability and
measurement uncertainty to warrant treatment as stochastic variables.

An alternative method used to evaluate landslide hazard is Monte Carlo sim-
ulation. Monte Carlo simulation is useful for modeling an attribute that can-
not be sampled or measured directly but can be expressed as a mathematical
function of properties that can be sampled or described. Factor of safety is such
an attribute. Monte Carlo simulation is the method used in LISA because of its
capability to incorporate the variabilities of many input parameters, as is re-
quired for a stability analysis of large, variable landforms using the infinite slope
model.

If we want to predict a possible value of the factor of safety, we take a possible
value for each input variable and use the appropriate performance function (a
stability equation) to calculate the corresponding value of the factor of safety.
This is known as one Monte Carlo pass or iteration. In Monte Carlo simulation
we generate a large number of factor of safety values (say 1,000) by repeated,
random, independent samplings of a set of possible input values and calculate
a corresponding factor of safety value for each pass. The set of possible input
values for each input parameter is described by a probability distribution. The
final simulation output is a set of 1,000 possible factor of safety values that can




be displayed as a histogram. The relative frequencies of these 1,000 values are
assumed to be representative of the frequencies we would have obtained had we
analyzed all possible combinations of the input variables. Thus, the relative fre-
quency of the computed factors of safety less than or equal to 1 is an estimate of
the probability of occurrence of factors of safety less than or equal to 1 in nature
(as defined by the user). We obtain the probability of failure by dividing the to-
tal number of passes into the number of calculated factm of safety values less
than or equal to 1.

1.4 Meaning of the Probability of Failure Estimated by LISA

The probability of failure, strictly speaking, is the total number of Monte Carlo
iterations divided into the number of calculated factors of safety with a value
less than or equal to one. In other words, it is the relative frequency with which
possible values of the factor of safety in the simulation are less than or equal to
one. The probability of failure estimated by LISA should be reported as a con-
ditional probability given that the considered storm event with the resulting
groundwater distribution used in the analysis occurs.

It is common to view the probability of an event as the likelihood of that event
occurring. This meaning does not work well for the probability of failure in a
large, variable landform, because the possibility of just one failure occurring in
the landform gives a probability of landslide occurrence of one. It is more useful
to think of the probability of failure of a large landform as the relative frequency
of failure events. For example, if landform A has a probability of failure of 0.05
and landform B has one of 0.025, we would expect landslides to be twice as se-
vere, in number or size, in landform A. The probability of failure can be viewed
as the probability of landshde occurrence if the area analyzed is small enough
(i.e., one slope or one drainage) so that only one failure could occur within the
area.

With few data, the input distributions represent one’s uncertainty about the
variables as well as one’s best guess about their spatial variability across the
landform. Therefore, because of the two-dimensional nature of the infinite slope
analysis, the estimated probability of failure can best be thought of as the likeli-
hood that any possible randomly selected cross-section through the slope would
be analyzed as unstable. As more data are available, the probability distribu-
tion of each input variable represents more the spatial variability of that vari-
able and less the uncertainty. Here the probability of failure should be an esti-.
mate of the expected percentage area of the landform involved in failure during
the period appropriate to the analysis, that is, during the period of minimum
root strength following timber harvest, or during the rain or snowmelt event
causing the groundwater levels used in the analysis.! Thinking of the probabil-
ity of failure as the expected portion of the landform in, or potentially in, failure
can indicate to management the magnitude of consequences to expect. However,
this meaning for the probability of failure should be verified by comparison with
field observations.

Landslide inventories provide the best means to verify whether the estimated
probability of failure values are reasonable. Landslide inventories traditionally
have been used to assess relative hazard by drawing the inductive conclusion
that landslides will occur again in areas where they have occurred previously.

! A method for conditioning the LISA probability of failure estimates with the probability
of certain rainfall or snowmelt events occurring during some specified length of time is dis-
cussed in appendix D.



Therefore, areas with many inventoried landslides should have a high proba-
bility of failure as predicted by LISA. When considering the percentage of land
area involved in landslides, we must realize that these “high” probabilities of
failure may actually occur on a small portion of the landscape. Published land-
slide inventories report values on the order of 0.5 to 15 percent of the area in-
ventoried (Ice 1985). If the input distributions are based on subjective estimates
rather than estimated from actual data, there may be only a relative compari-
son between probabilities of failure predicted by LISA and percentage of area in
slope failure. But we still should see the relative relationship that areas with a
higher probability of failure as predicted by LISA should have a higher frequency
of occurrence of landslides than do areas with a lower probability of failure.

As with any computer program, “garbage in = garbage out.” If the input
distributions do not describe realistically the values and distributions of the fac-
tors on the ground, then the simulated probability of failure will not provide a
realistic measure of landslide hazard. A method for quantifying the reliability in
the LISA results is desirable based on whether the initial input distributions are
formulated from field measurements or from subjective estimates. With such a
method, as more field measurements are made and subsequent data are fed back
into LISA from Level I1 and Level I1I field investigations, the increase in relia-
bility of the LISA simulation can be documented. Metliods to accomplish this
currently are under study.

1.5 Use of the Probability of Failure

The probability of failure can be used qualitatively to make relative compar-
isons between landforms to identify areas that should be targeted for additional
analysis. The probability of failure also can be used quantitatively in a risk anal-
ysis, such as an expected monetary value (EMV) decision analysis. Research ef-
forts are continuing in this area.

Often in land management planning, one has to make subjective judgments
about what probability of failure is acceptable. Interpretation of the probability
of failure as the percentage area expected in failure can help geotechnical spe-
cialists recommend to land managers what probability of failure is excessive.
However, the possible consequences of failure, such as an estimate of the quan-
tity of material that may impact downslope lands or streams, also need to be
addressed.

Reporting a single probability of failure value tends to imply precision in the
results. Therefore, we encourage users to report a range of probability of failure
values obtained from several simulations using the same input distributions but
different random number seeds. Also, one may perform sensitivity analyses with
LISA, changing the shape and values describing the input distributions over re-
alistic ranges to see how the probability of failure is affected. Again, the range
of values obtained should then be reported. Used as an iterative tool, LISA can
help the user document personal judgments and observations about an area,
communicate them to land managers and to other geotechnical specialists, and
help identify factors critical to landslide hazard assessment in a given area.
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1.6 Limitations of the LISA Analysis (What LISA Does Not Do)

LISA does not simulate the size or number of failures that might occur on a
particular landform. Nor can LISA predict exact locations of any failures, or the
type of failure (although it should give more accurate results for translational
failure modes). Therefore, LISA cannot be used to directly estimate the conse-
quences of failure, such as whether sediment will reach a stream, or the volume
of sediment delivered. '

1.7 How Factor of Safety Relates to Probability of Failure

One approach to estimating a “likelihood” of failure is to measure or estimate
either average or conservative values for each variable, and calculate a factor of
safety deterministically. If the resulting factor of safety is fairly high, say 1.2,
one could conclude that the likelihood of failure would be low. But how low
depends on whether average or conservative input values were used, and what
the possible variation in factors of safety is. In this section, we will discuss three
concepts concerning the relationship of factor of safety to probability of failure.

The first concept is that the mean factor of safety for a landform is not a good
indication of the probability of failure. This is because the probability of fail-
ure depends not only on the mean, but also on the variance of the factors of
safety, which is controlled by the variance in the input distributions. An ex-
ample is given in figure 1.1 and table 1.1 in which LISA gave similar mean fac-
tors of safety (1.26 and 1.19) for two hypothetical landforms, but a much higher
probability of failure for landform 1, which has larger standard deviations for
the input distributions. Table 1.1 shows the input distributions used. One should
be aware that larger standard deviations for the input distributions might lower

‘the probability of failure when the mean factor of safety is less than one.

The second concept is that the deterministic factor of safety calculated from
the mean values of each input distribution may not equal the mean of the dis-
tribution of the factor of safety values, even when all of the input distributions
are symmetrical. Take, for example, landform 1 in table 1.1. The mean val-
ues of the input distributions yield a deterministic factor of safety of 1.18 while
the mean of the distribution of factors of safety from Monte Carlo simulation is
1.26. This is due to the fact that the factor of safety distribution for landform 1
is skewed to the right, which shifts the mean factor of safety to a higher value
than that for a symmetrical distribution, In general, the expectation (or mean)
of a nonlinear function, in our case the infinite slope equation, is not equal to
the value of the function obtained when the mean values of each input variable
are used in the function. Therefore, the mean of the factor of safety distribution
should not necessarily be used as a substitute for a deterministic value (or vice
versa), particularly when the distribution is highly skewed. The mean is just
one measure of central tendency of the distribution. Commonly, the median or
the mode value is closer to the deterministic factor of safety value than is the
mean value. ’

Note that the mean value of the distribution for landform 2 (1.19) is very
close to the value obtained from the means of the input variables (1.18). This
happens because the distribution of factors of safety for landform 2 is relatively
symmetrical.

The third concept, often difficult for engineers to comprehend when first in-
troduced to probabilistic concepts, is that a slope with a computed factor of
safety of 1.0 is riot necessarily on the verge of failure. The probability of failure
is not 1.0. In fact, the probability of failure is on the order of about 0.4 to 0.6,

11



Landform 1
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Py =0.209
E(FS] = 1.26 .
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Figure 1.1—The distributions of factor of safety for two landforms. The
landforms have nearly the same mean factor of safety but quite different
probabilities of failure. The shaded area in each histogram represents
values of factor of safety less than 1.

depending on the skewness of the factor of safety distribution. If the factor of
safety distribution is symmetrical, the probability of failure is 0.5. This illus-
trates that the computed factor of safety may not be a good predictor of the be-
havior of the slope because of the natural variability of the physical factors and
because of our inability to know without error the values of these factors.
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Table 1.1—Distributions used for figure 1.1

Landform 1 Landform 2
Distribution z s Distribution I s

Soil depth (1, 4,7] 40 1.2 (3,4, 5] 40 0.4
Slope U[60,80] 700 5.8 T[65, 70, 75] 70.0 2.0
Tree surcharge U[5,15] 100 29 U5, 15} 10.0 2.9
Root cohesion U[20,140] 80.0 35.0 T[50, 70, 120] 80.0 14.6
Friction angle N[34,1] 340 1.0 N[34,0.5] 340 05
Soil cohesion N[50,15)  50.0 14.6 N[50,10] 50.0 10.0
Dry unit weight N[100,1]  100.0 1.0 N[100, 1] 100.0 1.0
Moisture content NT20,0.5] 20.0 0.5 N[20,0.5] 200 0.5
Specific gravity 2.66 2.66
Dw/D Ul0.4,1] 07 5.8 T1.5,.7,.9] 0.7 0.08
Factor of safety seefig. 1.1 1.26 03 see fig. 1.1 1.19 0.1
Deterministic

factor of safety 1.18 1.18
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CHAPTER 2—PROBABILITY THEORY

REVIEW

The user should be familiar with the following concepts and terms when us-
ing LISA. We advise that you also read a good textbook if the material is new
to you. Readable discussions are contained in Benjamin and Cornell (1970),
Newendorp (1975), and Smith (1986).

2.1 Definitions and Relationships

EVENT

RANDOM
VARIABLE

PROBABILITY
DISTRIBUTION

In probability theory, it is assumed that a random ex-
periment, or sampling exercise, will have outcomes that
depend on chance. A collection of one or more outcomes
is known as an event. For example, consider a labora-
tory testing program wherein the dry unit weight is de-
termined for each of 10 soil specimens randomly selected
from a Shelby tube sample. An outcome is one test re-
sult (say, 103 pcf). An event is a collection of outcomes,
such as all test results greater than 106 pcf, or all results
between 100 and 110 pcf.

P[B] is the probability that event B will occur. P[B]is
a real number between 0 and 1 assigned to event B.

P[B] is the probability that event B will not occur and
is known as the complement of P[B]. P[B] =1 — P[B].

A random variable (r.v.) is a variable or attribute (such
as a physical property or characteristic) that takes on dif-
ferent values according to the outcomes of repeated ex-
periments or sampling events.

These values cannot be predicted with certainty; thus,
each possible range of values has an associated probabil-
ity (or likelihood) of occurrence. For this reason, r.v.’s of-
ten are called stochastic variables to indicate the stochas-
tic, or probabilistic, nature of their values. The term ran-
dom here does not imply that the variable itself is ran-
dom or has randomly distributed values, but rather that
the values occur in a probabilistic manner. In the previ-
ous example for event, the dry unit weight of the soil is
an 7.v. If the value of a variable is known with certainty
or with negligible uncertainty (at the time of analysis or
decision making), then the variable is called a determinis-
tic variable.

A probability distribution is a discrete or continuous
function that defines the likelihood, or the probability,
that a random variable will have some particular range of
values. Probability distributions can be expressed in two
forms: the cumulative distribution function (CDF) and
the probability density function (PDF). These are shown
in figure 2.1 and described below.
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Figure 2.1—FExample CDF (a) and PDF (b). In each, the probability that the random
variable X takes on a value less than or equal to ¢y is equal to A;. This is expressed
mathematically as P[X < z1] = A;. The probability that the random variable X takes on
a value between x5 and z3 is equal to A3 — Ay on the CDF, and to the area under the

curve between z5 and z3 on the PDF.

CUMULATIVE
DISTRIBUTION
- FUNCTION (CDF)

PROBABILITY
DENSITY
FUNCTION (PDF)

The CDF for the r.v. X is a function that describes the
probability that the r.v. X takes on a value less than or
equal to z:

F(z) = P[X < z]

The properties of a CDF are:

e It has values between 0 and 1 inclusive.

e It is a nonnegative, nondecreasing function of a real-
valued variable. A CDF can be defined for discrete or
continuous r.v.’s.

The PDF for a continuous 7.v. X is defined as:

)

The properties of a PDF are:

e It is a nonnegative function where fjo(f fle)de =1

e The probability that the 7.v. X will take on a value
between 29 and z3 is equal to the area under the PDF
curve between z9 and z3:

Plzg < X < z3] = /za f(z)de

This is illustrated in figure 2.1b. PDF’s are used in
LISA to describe input variability.
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Figure 2.2—The relationship between mean, mode and median for a skewed right PDF
(a) and a skewed left PDF (b).

Measures of Central Tendency— There are specific values that give im-
rmation about a PDF. These values describe the cen-

portant and useful info
ch an r.v. is dis-

tral tendency of a PDF and the variability or range within whi
tributed. There are three measures of the central tendency of a PDF—the mean,

the median, and the mode.

The mean value of a PDF is the weighted average value
of an r.v. where the weighting factors are the probabili-
ties of occurrence. The mean value of a PDF is also called
the expectation of the r.v. (E[X]). If the r.v, X has a
known PDF (described by f(z)), then E[X] can be com-

puted by:?

MEAN

px = E[X] = / ef(z)de.
all
E[X] can be thought of and is ma,thematiéally equiva-
lent to the centroidal axis of the PDF.

The mode of a distribution is the value that occurs
with the greatest frequency, or the value that is most
probable. Thus, it is the peak of the PDF curve. A dis-
tribution may have one mode, more than one mode, or
no mode. A distribution having only one mode is called

unimodal.

MODE

The median of a distribution is the value of the r.v.
corresponding to a vertical line that divides the PDF into
two parts having equal areas. That is, there is a 0.50
probability that the r.v. will take on a value greater than

(or less than) the median value.

MEDIAN

2The general definition for expectation is: Eh(z)] = [y 5 M) f(z)de where h(z) is a
function of z. The mean is a special case in which h(z)==.
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The mean, mode, and median all coincide for symmetrical PDF’s. However,
for asymmetrical PDF’s, this will not be the case. Figures 2.2a and b illustrate
the relationship between the mean, mode, and median for a distribution skewed
to the right and a distribution skewed to the left, respectively. You should note
that for the skewed distribution, the mean value is not the most probable value—
the mode is. Often in deterministic studies, we think of the single value esti-
mate as being the mean or average value. However, the mean is just one mea-
sure of central tendency of the distribution and may not necessarily be the best
single value to use to characterize the distribution; the median or mode may be
better (see also section 1.7 for additional discussion).

Measures of Variability— There are also three measures of variability.
They are the range (the difference between maximum and minimum value), the
variance, and the standard deviation.

VARIANCE A common measure of the dispersion of the distribu-

tion of the ».v. X about its mean is given by the variance
of X:

Var[X] = / | o= ux)Pr(e)s

o, { If the variance is low, the values will be concentrated

' near the mean. If the variance is high, the values will be
| scattered over a wide range.

e
N STANDARD The standard deviation measures how far a typical or
ed DEVIATION average value of the r.v. X deviates from the mean. It is
computed as the positive square root of the variance of
- X: ’
ox = 4/ Var[X]

The units on the standard deviation are the same as the
units on the r.v.

COVARIANCE The covariance between two random variables X and
Y is a measure of the stochastic dependence between X
and Y. It is defined as:

Cov[X,Y] = E[(X - px)Y — py)]

T JoiNT When two random variables are being considered si-

ed PROBABILITY multaneously, their joint behavior is described by a joint

DENSITY probability density function. Joint behavior need only be

FUNCTION considered for LISA when the behavior of one random
variable is dependent on another (for example, Cs' and

into @', as discussed in section 4.2). A joint PDF is denoted by

fX,Y(m) y)~

;han

MARGINAL PDF A marginal PDTF describes the relative likelihood of val-
ues of one of the variables considered in a joint PDF, ir-
respective of the other. A marginal PDF is denoted by

sa fx(z).
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Figure 2.3—Joint PDF (fx,v(=,)) illustrating a negative correlation
between two random variables. Also shown are the marginal PDF's
(fr(y) and fx(z)) and the conditional PDF's at yi (fx\v(z, %)) and
zi (fx\v(zi,y)). Note that the shaded areas shown as conditional
PDF’s technically are not the true conditional PDF's because the area
under each curve does not equal 1. To be true conditional PDF's, they
need to be normalized by dividing by fx(z) or fy(y). However, the
‘shaded areas graphically represent the conditional PDF's.

CONDITIONAL A conditional PDF describes the relative likelihood of
PDF values of one variable when one value of the other vari-

able is given. A conditional PDF is denoted by fx\y(,¥:)-

SR

The joint, marginal, and conditional PDF’s are illustrated in figure 2.3.

MEAN AND In civil engineering and geology, the term sample means
STANDARD a single item, such as a soil sample. In statistics, the term
DEVIATION OF sample means a set of items, test results, or values. To

A STATISTICAL distinguish between the two meanings, the term speci-
SAMPLE men is preferred for an engineering or geological sample.

Thus, we can speak of a sample of 20 soil specimens, or a
sample of 25 slope measurements.

18



N

Generally, n specimens or measurements will yield one
statistical sample. The mean of the sample, Z, can be
calculated by:

z1+eot+2z3+.. e,
n

T =

where 7 is the number of data values. The standard devi-
ation of the sample can be calculated by:3

L [Se-a2
n—1

In LISA, as in most situations, the sample mean and
standard deviation are used to estimate the population
(true) mean and standard deviation when there are at
least 30 data values. Thus:

% = fix, where px = E[X]

s = 6x, where oy = 4/ Var[X]
The" denotes an estimated value.

COEFFICIENT OF The sample coefficient of variation (cy) is a dimension-
VARIATION less measure of dispersion and is equal to the ratio of the
v sample standard deviation to the sample mean: ¢, = s/z.

CORRELATION The correlation coefficient () is a measure of the linear
COEFFICIENT dependence between two random variables. The value of
a 7 varies between —1 and +1. A negative sign (—) means
a negative linear correlation, and a positive sign (+) means
a positive linear correlation between the two r.v.’s. The
correlation coefficient is defined as:

_ covlz, y]
 sxsy

If the rv.’s X and Y are statistically independent, then
their covariance, and 7, are zero. However, 7 can be small
even if their covariance is not small, such as in the case
where X and Y are nonlinearly related. In addition, a
high value of » can result for independent variables if,
in a scatter plot, all of the values except one are clus-
tered together, and the one outlier value lies well out-
side all the others.. This is known as a spurious correla-
tion. Therefore, it is highly recommended that you view
a scatter plot of the data to ensure correct interpretation
of the » value.

3Division by n—1 instead of by n is required here because s is obtained using one calcu-
lated term (Z), as well as using all of the data values. Thus, one degree of freedom is lost from
the data set. In other words, if you were provided with 19 data values and £ for a sample with
20 observations; you could calculate the 20th value (using ) (z;—%) = 0). Thus, only n ~ 1
of the data values are freely determined, and the nth value depends on the others.
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2.2.1 Uniform -
Distribution

2.2.2 Triangular
Distribution

2.2.8 Normal
Distribution

The correlation coefficient can be calculated by taking
the square root of the coefficient of determination (r2).
The value of 72 is a number between 0 and 1 (inclusive)
that describes the fraction of the variation in ¥ that is
explained by the variation in X, and can be obtained
from a least-squares linear regression between r.v.’s X
and Y. The sign of r is the same as the sign of the slope
of the line obtained from the regression. '

Important Relationships—For a constant ¢ and a random variable X,
E[eX] = cE[X]; Var[X + ¢] = Var[X]; and Var[cX] = ¢?Var[X]. For two random
variables X and Y, E[X + Y] = E[X] + E[Y].

2.2 Probability Distributions

The probability density functions (PDF’s) used in LISA are described in this
section. Formulas for the function (f(z)), the mean (z), and the standard de-
viation (s) of each distribution are given in the figures. These formulas are for
user reference only; the parameters that LISA requires for each PDF are shown
as USER INPUT. A shorthand notation for each distribution that is used in this
manual is also shown. Note that the y-axis of the PDF curve is labeled f(z);
that is, for a given value of the random variable X, the y-ordinate of the PDF
curve will be given by the function f(z). This function gives values for the y-
axis such that the area under the PDF curve is exactly 1. Remember, the proba-
bility of a random variable taking on a value between two values is given by the
area under the PDF curve between those values.

The uniform distribution describes a random variable for which any numeri-
cal value between the upper and lower limit is equally likely to occur. The PDF
of a uniform distribution has the shape of a rectangle as shown in figure 2.4.
This distribution is appropriate when limited information is available allowing
an estimate of the minimum and maximum values, but not an estimate of the
distribution shape. An example is a soils inventory that describes soil depth as
between 3 and 10 feet. The uniform distribution would, of course, also be ap-
propriate when the sample data suggest a uniformly distributed variable.

The triangular distribution has the shape of a triangle that can be symmet-
rical or skewed in either direction (fig. 2.5). As with the uniform distribution,
the triangular distribution would be used when relatively limited information is
available; however, enough information should be available to estimate a most
likely value as well as a minimum and maximum value. Note that the probabil-
ity of a value occurring close to the minimum or maximum value of a triangular
distribution is small, in contrast to a uniform distribution in which the proba-
bility of a value close to the minimum or maximum value occurring is the same
as for any other value. Therefore, it is advisable when using a triangular distri-
bution to extend the minimum and maximum values slightly beyond those you
would specify for a uniform distribution.

e

The normal, or Gaussian, distribution has the familiar bell-shaped symmetry
about the mean (fig. 2.6) and is defined by the mean and standard deviation.
Of the total area under the normal curve, 68.26 percent occurs between the lim-
its of the mean plus 1 standard deviation and the mean minus 1 standard devia-
tion. This means that the probability of a normally distributed random’ variable
having a value between the limits of the mean 41 standard deviation is 0.6826.
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Figure 2.5—Triangular PDF.

Thus, when considering a sample data set, about 68 percent of the data points
would be included in the interval defined by the mean +1 standard deviation if
the random variable is normally distributed. Further, 95.84 percent of the total
area under the curve is bound by the mean 42 standard deviations, and 99.72
percent by the mean +3 standard deviations.

Although the theoretical limits of the normal distribution are positive and

negative infinity, LISA limits the distribution to 13.09 standard deviations (thereby
sampling throughout 99.8 percent of the area under the normal PDF curve).
These limiting values are indicated on the plot you obtain with the Plot option
while viewing a data file (see part 2, section 3.10). Understanding these limits is
helpful in estimating a realistic mean and standard deviation from limited infor-
mation.

A good rule of thumb for estimating the standard deviation of a normally dis- B
tributed variable is to divide the range by 4. For example, suppose that the for-
est soils inventory estimates that soil depths in a particular study area are in
the range of 2 to 8 feet, and your past experience indicates that depths are likely
normally distributed. A realistic mean and standard deviation would then be
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Figure 2.6—Normal PDF.
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5 and 1.5 feet, respectively. LISA then will simulate values between 0.4 and 9.6
feet, with about 95 percent of the values between 2 and 8 feet.

If a standard deviation that is too large for a given mean is used, unrealistic
endpoints for the normal distribution can result. For example, a normal distri-
bution with a mean of 5 and a standard deviation of 3 will have limiting values
of —4.3 and 14.3 (at the mean £3.09 standard deviations). Obviously, negative
values for the physical factors in the infinite slope equation make no sense. To
prevent simulation of negative values, LISA will check the value at the mean
—3.09 standard deviations upon data entry, and if it is negative, LISA will dis-
play a warning message and wait for the user to enter values for the mean and
standard deviation such that the value of the mean —3.09 standard deviations
becomes positive.

2.2.4 Lognormal The lognormal distribution is skewed to the right, indicating there is a rela-
Distribution tively small probability of large values for the random variable. Figure 2.7 illus-
trates the general shape of the lognormal distribution. :

Tf a random variable, X, is lognormally distributed, the logarithms of the val-
ues of X are normally distributed. By taking the logarithms of the values and
computing the mean and standard deviation of these transformed values, one
can use a standard normal distribution table to compute probabilities. One also
can compute the mean and standard deviation of the logarithms of the values of
X directly using the following formulas:

: 2
& = lnl%+1]

where # and s are the mean and standard deviation of the actual data values,
and fi; and ; are the estimated mean and standard deviation of the log-
transformed variable, respectively. To simplify input, LISA users enter only the
mean and standard deviation of the actual data values, Z and s.

The shape of the lognormal distribution varies quite drastically with the coef-
ficient of variation (c,). If the ¢, is less than about 0.08, the lognormal distribu-
tion is nearly symmetrical and looks like a normal distribution. As the ¢y
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p1 is the mean of the logarithms of the values of the random variable.
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& is approximately s of the values of the random variable for large samples.

Figure 2,7—Lognormal PDF.

2.2.5 Beta
Distribution

increases, the lognormal distribution becomes skewed more strongly to the right.
The lognormal distribution is defined from zero to positive infinity, but LISA
limits the simulation to values of the transformed mean () £3.09 times the
transformed standard deviation (o). These values are shown on the distribu-
tion plot using the Plot option in LISA. The plotting option is helpful in select-
ing a mean and standard deviation that will give the desired shape and mini-
mum and maximum values (see sections 3.10 and 3.11 in part 2).

The beta distribution requires four parameters to describe it—a minimum
value (a), a maximum value (b), and two shape parameters (P and @). The ad-
vantage of the beta distribution over some of the other distibution types is that
the limits of the distribution are specified by the user, which eliminates the care
required with the normal or lognormal distribution in the selection of a reason-
able mean and standard deviation in order to obtain a realistic range of simu-
lated values.

Also, the beta distribution can take on a wide variety of shapes; it can be
skewed left, skewed right, or symmetrical, depending on the values of P and Q.
In general, when P and Q are equal, the distribution is symmetrical; when P is
greater than @, the distribution is skewed left; and when P is less than @, the
distribution is skewed right. As the values of P or @ or both increase, the distri-
bution becomes more peaked (greater kurtosis). Some of the possible shapes are
shown in figure 2.8. Because the shape of the beta can be so variable, the Plot
option in LISA is extremely useful in selecting appropriate P and Q values.

23



f(=) 1

Bla,b,1,1]

f(=) 5

Bla,b,2,1]

F(=) 1

(==

Bla,b,3,1]

F(=) 1

0 = 1
a bz

Bla,b,4,1]

Figure 2.8—Beta PDF.

Sley

f(z) 1

a b o
Bla,b,2,2]
f(z) 1
0 T ™
a bz
Bla,b,3,2]
f(=z) 1
0 13 1 1
a bz
Bla,b,4,2)

f(=) 1 f(z) 1

Q
o>~ o
-
Q
o~ -
8

Bla,b,1,3] Bla,b,1,4]

f(=) - HOM

-

82
™~
]
e
8 o

B[a,b,2,3] B[a)b; 2)4]

1) O

0 T Tt L
a bz a bz
Bla,b,3,3] Bla,b, 3,4]
 f(=) A f(=) 1
0 1/_\1 1 O /\r 1
C a bz a bz
Bla,b,4,3] Bla,b,4,4]
4

24

-

G



r(r+Q) [(Pﬂ)”’“l(bﬂ)‘:"_1 ifa <z <b
)= .

@) | (-arta-T |
0, otherwise.
bP
X = "5 Q
__ (-9o)’PQ
vrlX1= B rorrr e+

P and Q must be greater than 0.

[ is the complete gamma function:
Ma) = / w* et du = (a — 1)l (a - 1).
0

When « is a positive integer, then [(a) = (e — 1)},
USER INPUT: a,b,P,Q
NOTATION: Bla,b, P, Q]

Figure 2.8—(Con.)

P and Q also can be estimated from the sample mean (Z) and standard devia-
tion (s) using the following equations:

where

b—2

i t= )
z—a
and a and b are the minimum and maximum values, respectively.

The disadvantage of using the beta distribution is that it requires approxi-
mately 20 to 30 times the computational time as do the other distributions. For
example, it takes approximately 85 seconds to sample 1,000 values for the beta,
while only 4 seconds for the other distributions on an 8.5 MHz machine with a

math coprocessor; and 12 seconds for a beta while only 0.5 seconds for the oth-
ers on a 20 MHz (80386) machine.

2.2.6 Relative- A useful first step in selecting a PDF is to plot a histogram or relative-frequency
Frequency histogram. This is done by grouping data into classes and then plotting a bar
Histogram graph with the height of each bar equal either to.the number of observations (to
Distribution obtain a histogram), or to the relative frequency of observations (to obtain a

relative-frequency histogram). The relative frequency is the number of observa-
tions in each class divided by the total number of observations. The histogram
or relative-frequency histogram gives a good picture of the range and the distri-
bution of data values. The relative-frequency histogram can be used directly in
LISA, or the shape of the histogram or relative-frequency histogram might sug-
gest another distribution that can be used to model the data.
Figure 2.9 shows an example histogram and relative-frequency histogram.

Note that in LISA you enter the relative frequency expressed as a percentage.
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Figure 2.9—A histogram PDF (right axis) and relative-frequency histogram PDF (left
axis).

The relative frequency represents the probability of the random variable tak-
ing on a value in that class interval. Therefore, the percentages in all the classes
must sum to 100 percent.

The appearance of the relative-frequency histogram can be affected signifi-
cantly by the number and width of the class intervals used. Sturges (1926) sug-
gests as a guide for selecting the number of classes of equal width

k=1+3.3logyn

where k is the number of classes and n is the number of data values. If too few
classes are used, details of the shape of the data distribution will be lost. If too
many are used, the histogram or relative-frequency histogram will appear er-
ratic.

One comment on class width must be made. It can be convenient and is le-
gitimate to use classes of unequal widths in the relative-frequency histogram.
However, when unequal class widths are used, be aware that the relative- flequen
histogram may give an incorrect picture of what the actual PDF looks like. This
happens because the relative-frequency histogram is not a true PDF; that is, the
area under the curve, computed as the sum of each class width times the fre—
quency of observations in that class, does not, in general, equal 1. To obtain
the true PDF, the frequency of observations in each class must be divided by
the class width. This gives units on the y-axis of frequency per z, where z is in
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Figure 2.10—A histogram and relative-frequency histogram with un-
equal class widths (a) and the corresponding frequency density distribu-
tion (b).

the units of the random variable, and gives the area under the curve equal to 1.
This true PDF is called a frequency density distribution.

Let’s take a simple example. Figure 2.10a shows a histogram and relative-
frequency histogram for 99 measurements of root strength (Cy) in which 33
measurements fall into each of three classes of unequal width. Notice that it
looks like a uniform distribution. Figure 2.10b shows the frequency density dis-
tribution obtained by dividing 0.33, the relative frequency, by each class width.
The shape of the distribution is drastically different, more like a triangular dis-
tribution. It is this true PDF that you see with the Plot option in LISA, and
when you view the histogram of the simulated data after execution.

An example in which the use of unequal class widths is convenient is shown
in figure 2.11. A soils inventory indicated that soil depths are predominantly
between 24 and 48 inches with 15 percent of the landform having soils greater
than 48 inches. Because the maximum soil depth is uncertain, several widths
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Figure 2.12—The relative-frequency histogram (a) and and the frequency density distribu-
tion (b) for a histogram of unequal class widths.

for the last class might be used to evaluate the sensitivity of the probability of
failure to the maximum value. Figure 2.11b shows the effect of class width on
class height in the frequency density distribution.

Another situation in which the difference between the relative-frequency his-
togram and the frequency density distribution appears is the case of narrow
classes on the end of the histogram, as illustrated in figure 2.12. Tacking on nar-
row classes with small frequencies is an easy fix to make percentages sum to 100
percent. Just be aware that this can cause LISA to sample more values in those
classes than may have been intended.

2.2.7 Bivariate The bivariate normal distribution is a joint PDF that can be used to model
Normal the linear correlation between C, and ¢’ (see section 4.2) and is available only
Distribution for these two parameters. Figure 2.13 illustrates a bivariate normal PDF. The

bivariate normal PDF is defined by specifying the normal marginal distributions
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Figure 2.13—A bivariate normal distribution.

for CL and ¢' (that is, the means and standard deviations) and the correlation
coefficient () between CL and ¢'.
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